

Machine Translation for Multilingual Information Processing Marcello Federico, Human Language Technology Research, Fondazione Bruno Kessler, Trento, Italy

> TrebleCLEF Summer School on Multilingual Information Access Hotel Santa Croce in Fossabanda, Pisa, Italy 15-19 June 2009

(Statistical) Machine Translation for Multilingual Information Processing

Marcello Federico FBK-irst Trento, Italy

Pisa, 15-19 June 2009

TrebleCLEF Summer School

Outline

Machine Translation

Wikipedia

Machine translation, often referred to by the acronym MT, is a sub-field of computational linguistics that investigates the use of computer software to translate text or speech from one natural language to another.

Preferred Definition

MT investigates the translation of "standard" language that can be systematically observed in ordinary communication – e.g. conversations, news, speeches, business letters, user manuals, etc. –. MT as a discipline is not interested in the translation of literature genres that express creative and sophisticated use of language. For several reasons, such kind of language is simply out of the scope of MT^1 .

¹A very interesting survey about the translation of literature work see U. Eco, "Experiences in Translation", 2000.

M. Federico, FBK-irst

TrebleCLEF Summer School

3

2

Introduction

• Approaches

M. Federico, FBK-irst

- Statistical MT
- Modeling
- Search
- Evaluation
- State-of-the-art
- Examples

Introduction to MT

Why is Machine Translation so Difficult?

High quality human translation implies:

- deep and rich understanding of source language and text
- sophisticated and creative command of target language

Nowadays, feasible goals for machine translation are only tasks:

- for which a rough translation is adequate (gist translation)
- where a human post-editor can improve MT output (CAT)
- focusing on small linguistic domains (translators on PDAs)

In general, difficulty of translating depends on how similar the target and source languages are in their vocabulary, grammar, and conceptual structure.

Pisa, 15-19 June 2009

Differences and Similarities of Languages

- Universal communicative role of language
- names for people, words for talking about women, men, children
- $-\ensuremath{\,\text{every}}$ language seems to have nouns and verbs
- Differences/similarities across large classes of languages ²:
- Morphological: one vs. many morphemes per words, agglutination vs. fusion
- Syntactical: Subj-Verb-Obj structure (E) vs. SOV (J) vs. VSO (Irish)
- Semantical: direction/manner of motion indicated by verb/satellites
- the bottle <u>floated</u> <u>out</u> (E) \rightarrow la botella <u>salió</u> <u>flotando</u> (S)
- Differences in specificity, often peculiar to single languages:
- Lexical: informatique (F) \rightarrow computer science (E)
- Syntactical: she <u>likes</u> to sing $(E,v) \rightarrow sie$ singt gerne (D,adv)
- Semantical: wall (E) \rightarrow Wand/Mauer (G, inside/outside)
- Cultural Differences: philosophical argument=is translation possible at all?

²A gentle introduction to MT is in D. Jurafsky and J. H. Martin, Speech and Language Processing, 2009.

TrebleCLEF Summer School

Approaches to MT

According to employed linguistic representations:

- Direct model: translate and re-order single words or n-grams
- basically, no linguistic representation is used
- Transfer model: use explicit knowledge about language differences
- analyze lexical and syntactic structure of source sentence
- transfer structures from source to target language
- $-\ensuremath{\,\text{generate}}$ corresponding sentence in the target language
- Interlingua model: extract the meaning and express it in the target language
- analyze lexical, syntactical and semantical structure of source sentence
- interpret the meaning into a canonical interlingua
- generate the target sentence from the interlingua

Notice: required knowledge for the interlingua approach grows linearly with number of languages, rather than to the square.

M. Federico, FBK-irst

Pisa, 15-19 June 2009

6

7

Approaches to MT

TrebleCLEF Summer School

According to the acquisition of models and knowledge:

- Hand-crafted: knowledge for analysis, transfer, generation, meaning representation, or direct translation is manually developed
 - most of commercial MT systems fall in this category
 - requires lots of human labor and expertise
 - includes: rule-based MT
- Machine-learned: representations are implemented by mathematical models learnable from data, e.g. parallel corpora of human translations
- much less human effort is needed
- requires huge amounts of data, the more, the better!
- includes: statistical MT and example-based MT

The two classifications are orthogonal

Pisa, 15-19 June 2009

ΤT

NN

Transfer-Based MT

context-free grammar

the

M. Federico, FBK-irst

north wind

8

Statistical Machine Translation

• parallel texts

dalla serata di domani soffierà un freddo vento orientale since tomorrow evening an eastern chilly wind will blow

M. Federico, FBK-irst

TrebleCLEF Summer School

Pisa, 15-19 June 2009

10

FONDAZIONE BRUNO KESSI FE

Transfer-Based MT

TrebleCLEF Summer School

Statistical Machine Translation

• parallel texts

dalla serata di domani soffierà un freddo vento orientale since tomorrow evening an eastern chilly wind will blow un vento freddo da est interessa le Alpi an eastern cool breeze affects the Alps

Pisa, 15-19 June 2009

Statistical Machine Translation

• parallel texts

dalla serata di domani soffierà un freddo vento orientale since tomorrow evening an eastern chilly wind will blow

• automatic word alignments

dalla serata di domani soffierà un freddo vento orientale

10

10

Statistical Machine Translation

parallel texts

dalla serata di domani soffierà un freddo vento orientale since tomorrow evening an eastern chilly wind will blow

• automatic word alignments

dalla serata di domani soffierà un freddo vento orientale since tomorrow evening an eastern chilly wind will blow

un vento freddo da est interessa le Alpi an eastern cool breeze affects the Alps

un vento freddo da est interessa le Alni

an eastern cool breeze affects the Alps

word translation probabilities

translations of freddo	counts	probs	
chill	15	0.15	
chilly	10	0.10	
cold	43	0.43	
cool	28	0.28	

M. Federico, FBK-irst

Pisa, 15-19 June 2009

un vento freddo da est interessa le Alpi

an eastern cool breeze affects the Alps

Statistical Machine Translation

TrebleCLEF Summer School

parallel texts

dalla serata di domani soffierà un freddo vento orientale since tomorrow evening an eastern chilly wind will blow

• automatic word alignments

dalla serata di domani sofflerà un freddo vento orientale

un vento freddo da est interessa le Alpi an eastern cool breeze affects the Alps

Statistical Machine Translation

TrebleCLEF Summer School

parallel texts

M. Federico, FBK-irst

dalla serata di domani soffierà un freddo vento orientale un vento freddo da est interessa le Alpi since tomorrow evening an eastern chilly wind will blow an eastern cool breeze affects the Alps • automatic word alignments

dalla serata di domani sofflerà un freddo vento orientale since tomorrow evening an eastern chilly wind will blow

word translation probabilities

translations of	counts	probs	translations of		
chill	15	0.15	vento	counts	probs
chilly	10	0.10	wind	59	0.59
cold	43	0.43	breeze	26	0.26
cool	28	0.28			

Pisa, 15-19 June 2009

Statistical Machine Translation

• parallel texts

dalla serata di domani sofflerà un freddo vento orientale since tomorrow evening an eastern chilly wind will blow un vento freddo da est interessa le Alpi an eastern cool breeze affects the Alps

10

11

• automatic word alignments

dalla serata di domani soffierà un freddo vento orientale

• word translation probabilities and target text probabilities

translations of freddo	counts	probs	translations of		maha	bigrams with eastern	counts	probs
chill	15	0.15	vento	counts	probs	eastern cool	5	0.05
chilly	10	0.10	wind	59	0.59	eastern chilly	10	0.10
cold	43	0.43	breeze	26	0.26	eastern wind	12	0.12
cool	28	0.28	•••			eastern breeze	7	0.07
						eastern		

M. Federico, FBK-irst

TrebleCLEF Summer School Pisa, 15-19 June 2009

Statistical Machine Translation

• given word translation probabilities and target text probabilities:

translations of	counts	npohe				bigrams with	counts	nrohe	
freddo	countis	probs	translations of	oounta	nnoha	eastern	countis	probb	
chill	15	0.15	vento	Countra	probs	eastern cool	5	0.05	
chilly	10	0.10	wind	59	0.59	eastern chilly	10	0.10	
cold	43	0.43	breeze	26	0.26	eastern wind	12	0.12	
cool	28	0.28				eastern breeze	7	0.07	
						eastern			

• search over possible translations of the source sentence

un freddo vento da est

Statistical Machine Translation

• given word translation probabilities and target text probabilities:

translations of freddo	counts	probs	translations of			bigrams with eastern	counts	probs
chill	15	0.15	vento	counts	probs	eastern cool	5	0.05
chilly	10	0.10	wind	59	0.59	eastern chilly	10	0.10
cold	43	0.43	breeze	26	0.26	eastern wind	12	0.12
cool	28	0.28				eastern breeze	7	0.07

• search over possible translations of the source sentence

un freddo vento da est a cool

a cool eastern breeze

M. Federico, FBK-irst

TrebleCLEF Summer School

Pisa, 15-19 June 2009

13

Statistical Machine Translation

• given word translation probabilities and target text probabilities:

translations of freddo	counts	probs	translations of			bigrams with eastern	counts	probs
chill	15	0.15	vento	counts	probs	eastern cool	5	0.05
chilly	10	0.10	wind	59	0.59	eastern chilly	10	0.10
cold	43	0.43	breeze	26	0.26	eastern wind	12	0.12
cool	28	0.28				eastern breeze	7	0.07
						eastern		

• search over possible translations of the source sentence

un freddo vento da est

a cool eastern breeze an eastern chilly wind

Statistical Machine Translation

• given word translation probabilities and target text probabilities:

translations of freddo	counts	probs	translations of			bigrams with	counts	probs
chill	15	0.15	vento	counts	probs	eastern cool	5	0.05
chilly	10	0.10	wind	59	0.59	eastern chilly	10	0.10
cold	43	0.43	breeze	26	0.26	eastern wind	12	0.12
cool	28	0.28				eastern breeze	7	0.07

• search over possible translations of the source text

un freddo vento da est	a cool eastern breeze an eastern chilly wind
	a eastern cool wind a cold eastern wind an eastern chilly breeze

TrebleCLEF Summer School Pisa, 15-19 June 2009

Statistical Machine Translation

• given word translation probabilities and target text probabilities:

translations of	oounto	nnoha				bigrams with	oounta	nnoha
freddo	counts	probs	translations of	oounta	nnoha	eastern	counts	probs
chill	15	0.15	vento	counts	probs	eastern cool	5	0.05
chilly	10	0.10	wind	59	0.59	eastern chilly	10	0.10
cold	43	0.43	breeze	26	0.26	eastern wind	12	0.12
cool	28	0.28				eastern breeze	7	0.07
						eastern		

• search over possible translations of the source text compute their probabilities or scores

un freddo vento da est	a cool eastern breeze	0.08
	an eastern chilly wind	0.10
	a eastern cool wind	0.09
	a cold eastern wind	0.12
	an eastern chilly breeze	0.05

15

Statistical Machine Translation

• given word translation probabilities and target text probabilities:

translations of freddo	counts	probs	translations of			bigrams with eastern	counts	probs
chill	15	0.15	vento	counts	probs	eastern cool	5	0.05
chilly	10	0.10	wind	59	0.59	eastern chilly	10	0.10
cold	43	0.43	breeze	26	0.26	eastern wind	12	0.12
cool	28	0.28	•••			eastern breeze	7	0.07
						eactern		

 search over possible translations of the source sentence compute their probabilities or scores and pick the most likely one

un freddo vento da est	a cool eastern breeze an eastern chilly wind a eastern cool wind a cold eastern wind an eastern chilly breeze	0.08 0.10 0.09 0.12 0.05

M. Federico, FBK-irst

TrebleCLEF Summer School

Pisa, 15-19 June 2009

17

Classical SMT Framework

Let f be any text in the source (foreign) language. The most probable translation \hat{e} is searched among texts in the target (English) language through the following statistical decision criterion³:

$$\hat{\mathbf{e}} = \arg\max\Pr(\mathbf{f} \mid \mathbf{e})\Pr(\mathbf{e}) \tag{1}$$

The computational problems of SMT:

- language model: estimate probabilities Pr(e)
- translation model: estimate probabilities $\Pr(\mathbf{f} \mid \mathbf{e})$
- search problem: carry out the optimization criterion (1)

Remarks

- all translation pairs are plausible, in principle, but have different probs
- although theory is presented with target English it is general

 $^3 {\sf F}$ undamental paper on SMT: P. Brown, S. Della Pietra, V. Della Pietra, R. Mercer, The Mathematics of Statistical Machine Translation: Parameter Estimation, Computational Linguistics, 1993.

Search Criterion with Alignments

vento freddo da est = f
eastern cool breeze =
$$\arg \max_{\mathbf{e}} \Pr(\mathbf{f} \mid \mathbf{e}) \Pr(\mathbf{e})$$

= $\arg \max_{\mathbf{e}} \sum_{\mathbf{a}} \Pr(\mathbf{f}, \mathbf{a} \mid \mathbf{e}) \Pr(\mathbf{e})$

- Alignments are the (hidden) link between words of ${\bf f}$ and words of ${\bf e}$
- $\bullet \ \Pr(\mathbf{f}, \mathbf{a} \mid \mathbf{e})$ is called Alignment Model
- Alignments permit to decompose or factorize the alignment model
- Notice that alignments map positions of **f** to positions of **e**, not words!

\mathtt{vento}_1	${\tt freddo}_2$	\mathtt{da}_3	\mathtt{est}_4	\rightarrow	\mathtt{null}_0	$\texttt{eastern}_1$	\texttt{cool}_2	$\verb+breeze_3$
1	2	3	4	\rightarrow	0	1	2	3

18

19

Approximate Search Criterion

$$\hat{\mathbf{e}} = \arg \max_{\mathbf{e}} \sum_{\mathbf{a}} \Pr(\mathbf{f}, \mathbf{a} \mid \mathbf{e}) \Pr(\mathbf{e})$$
$$\approx \arg \max_{\mathbf{a}} \operatorname{Pr}(\mathbf{f}, \mathbf{a} \mid \mathbf{e}) \Pr(\mathbf{e})$$

- instead of searching for the best translation
- compute the best translation and best alignment
- avoid summing over all alignments
- is this approximation reasonable?
 - yes, if for ${\bf f}$ and ${\bf e}$ there is only one probable alignment
 - not so good if the probable alignments are several
- a better approximation is summing over few most probable alignments

```
M. Federico, FBK-irst
```

```
TrebleCLEF Summer School
```

Pisa, 15-19 June 2009

21

Model Factorization

Language and alignment models are factorized with two types of assumptions:

- bag-of-word model: $\Pr(a, b, c \mid e) \approx \Pr(a \mid e) \times \Pr(b \mid e) \times \Pr(c \mid e)$
- Markov chain model: $\Pr(a, b, c \mid e) \approx \Pr(a \mid e) \times \Pr(b \mid a, e) \times \Pr(c \mid b, e)$
- so probabilities are defined over smaller events and are easier to estimate
- Alignment Model: reordering model × lexicon model
 - $\Pr(\mathbf{f}, \mathbf{a} \mid \mathbf{e}) = \Pr(\mathbf{a} \mid \mathbf{e}) \times \Pr(\mathbf{f} \mid \mathbf{a}, \mathbf{e})$
- these models are further factorized and simplified!
- there is a hierarchy of alignment models: Model 1 to Model $\mathbf{5}^4$
- we will review Model 1: the simplest alignment model
- Language Model: product of n-grams probabilities (e.g. 3-grams)
- $-\operatorname{Pr}(\mathbf{e}) = \operatorname{Pr}(e_1) \times \operatorname{Pr}(e_2 \mid e_1) \dots \operatorname{Pr}(e_l \mid e_{l-2}, e_{l-1})$
- the above trigram probabilities are smoothed to not over fit the training data

⁴See P. Brown et al., 1993.

The Current Approach to SMT

The so-called discriminative or Log-Linear Model⁵ approach is based on:

$$\mathbf{e}^* = \arg\max_{\mathbf{e}} \sum_{\mathbf{a}} \Pr(\mathbf{e}, \mathbf{a} \mid \mathbf{f}) \approx \arg\max_{\mathbf{e}} \max_{\mathbf{a}} \Pr(\mathbf{e}, \mathbf{a} \mid \mathbf{f})$$
(2)

The posterior probability $Pr(\mathbf{e}, \mathbf{a} | \mathbf{f})$ is determined through real valued feature functions $h_k(\mathbf{e}, \mathbf{f}, \mathbf{a})$, $k = 1 \dots M$, and takes the parametric form:

$$p_{\lambda}(\mathbf{e}, \mathbf{a} \mid \mathbf{f}) \propto \exp\{\sum_{k} \lambda_k h_k(\mathbf{e}, \mathbf{f}, \mathbf{a})\}$$
 (3)

Important: this model includes the classical formulation if M = 2:

$$h_1(\mathbf{e}, \mathbf{f}, \mathbf{a}) = \log \Pr(\mathbf{e}), \ h_2(\mathbf{e}, \mathbf{f}, \mathbf{a}) = \log \Pr(\mathbf{f}, \mathbf{a} \mid \mathbf{e}), \ \lambda_1 = \lambda_2 = 1$$

⁵F. Och and H. Ney, Discriminative training and maximum entropy models for statistical machine translation, Proc. of ACL, 2002.

N /	E - d - d	FDI/ :
IVI	Federico	EDN-IIST
	· cacileo,	1 011 1100

TrebleCLEF Summer School Pisa, 15-19 June 2009

A Simple Alignment Model: Model 1

 $Pr(\mathbf{f} = f_1, \dots, f_m, \mathbf{a} = a_1, \dots, a_m \mid \mathbf{e} = \mathbf{e}_1, \dots, e_l)$

- is factorized in the following random processes:
- 1. Choose length m according to $p(m \mid l)$
- 2. Choose each a_i independently and at at random $\propto (l+1)^{-1}$
- 3. Choose each word f_i independently with $p(f_i | e_{a_i})$

Model 1 is poor to guide a MT search algorithm, but:

- It is robust to score translation hypotheses (semantic similarity?)
- The corresponding Translation Model is very efficient to compute
- The lexicon model $p(f \mid e)$ can be efficiently estimated from a parallel corpus

Models 1-5 can be trained with the open source code GIZA++

22

23

Model 1: Estimation

Let us assume that we have a parallel corpus with alignments:

Maximum Likelihood Estimation for discrete distributions:

 $\Pr(a \mid b) \approx \frac{\mathsf{count}(a, b)}{\sum_a \mathsf{count}(a, b)} = \frac{\mathsf{count}(a, b)}{\mathsf{count}(b)}$

We can estimate translation probabilities by counting aligned word-pairs, e.g.:

$$\Pr(\mathsf{chilly} \mid \mathsf{freddo}) = \frac{\mathsf{count}(\mathsf{chilly}, \mathsf{freddo})}{\mathsf{count}(\mathsf{freddo})} = \frac{1}{2} = 0.5$$

You have to imagine to use a very large parallel corpus indeed!

M. Federico, FBK-irst TrebleCLEF Summer School Pisa, 15-19 June 2009

IBM Model 1: Viterbi Alignment

Let us assume that we probabilities $p(f \mid e)$ for all word-pairs, e.g.:

translations of	aounta	nnohe				
freddo	counts	probs	translations of	oounto	nnoha	
chill	15	0.15	vento	Countra	probs	
chilly	10	0.10	wind	59	0.59	
cold	43	0.43	breeze	26	0.26	
cool	28	0.28				

Given a parallel corpus without alignments:

dalla serata di domani soffierà un freddo vento orientale	un vento freddo da est interessa le Alpi
since tomorrow evening an eastern chilly wind will blow	an eastern cool breeze affects the Alps

we can compute the most probable or Viterbi alignment of each sentence pair:

$$\begin{aligned} \mathbf{a}^* &= \arg \max_{\mathbf{a}} \Pr(\mathbf{a} \mid \mathbf{f}, \mathbf{e}) \text{ which gives:} \\ a_j^* &= \arg \max_{i=0,1,\dots,l} p(f_j \mid e_i) \end{aligned}$$

Estimation of IBM Models

How to train alignment models?

- we could use parallel data with alignments to train the model (MLE)
- we could compute the alignments through the model (Viterbi alignment)

Idea to solve this chicken & egg problem:

TrebleCLEF Summer School

EM Training Algorithm of Model 1

The above algorithms is called Expectation Maximization

26

EM Training Algorithm of Model 1

```
EXPECTED-COUNTS(F,m,E,I,P,c)
  // Update statistics c[f,e] using P[]
1
   for i := 1 to m;
2
3
         do t := 0:
4
            for i := 0 to |:
5
                 do f=F[i]; e=E[i];
6
                    t := t + P[f,e];
7
            for i := 0 to |:
                 do f:=F[i]; e:=E[i];
8
                    c[f,e] := c[f,e] + P[f,e] / t;
9
```

M. Federico, FBK-irst	TrebleCLEF Summer School	Pisa, 15-19 June 2009

EM-MODEL2(F,m,E,I,S)

- INIT-PARAMS(P); // Probabilities P[f,e]=p(f/e)
 do
 RESET-COUNTS(c); // Statistics c[f,e]
 for s := 1 to S; // compute expected statistics
 do EXPECTED-COUNTS(F[s],m[s],E[s],I[s],P,c);
- 6 for $e \in \mathcal{E}$;

M. Federico, FBK-irst

- 7 **do** tot[e]:=0;
- 8 **for** $f \in \mathcal{F}$; // compute normalization 0 **de** tot[c] := tot[c] + o[f_{2}]:

9 **do** tot[e] := tot[e] + c[f,e];
10 **for**
$$f \in \mathcal{T}$$
, // under a promotion

- 10 **for** $f \in \mathcal{F}$; // update parameters
- 11 **do** P[f,e] := c[f,e]/tot[e];
- 12 **until** convergence

Trigram Language Model

The Language Model (LM)⁶ gives the probability of $\mathbf{e} = e_1, e_2, \dots, e_l$.

- $\bullet\,$ The LM probability must also guess the length of e
- We might assume an n-th order Markov chain factorization:

$$\Pr(\mathbf{e}_1^l) \approx \Pr(l) \cdot \Pr(e_1) \cdot \Pr(e_2 \mid e_1) \prod_{i=3}^l \Pr(e_i \mid e_{i-2}, e_{i-1})$$

The above LM is called Trigram language model

- probabilities are estimated by smoothing relative frequencies of trigrams
- $\bullet\,$ trigrams are collected on a huge text corpus in the target language
- $\bullet\,$ Notice: LM probability can be computed incrementally on the target string
- LMs can be trained with SRILM Toolkit or IRSTLM Toolkit

 ^{6}A gentle introduction to LMs is in D. Jurafsky and J. H. Martin, Speech and Language Processing, 2009.

29

Pisa, 15-19 June 2009

ARPA File Format

N-grams probs (in the log space) can be computed by composing probs and back-off weights (\approx the prob of a new word after a given context):

\data
\ngram 1= 86700
\ngram 2= 1948935
\ngram 3= 2070512
\1-grams:
-2.88382 ! -2.38764
-2.94351 world -0.514311
-6.09691 pisa -0.15553
<pre> \2-grams: -3.91009 world ! -0.351469 -3.91257 hello world -0.24 -3.87582 hello pisa -0.0312 \3-grams: -0.00108858 hello world ! -0.000271867 , hi hello ! \end</pre>
<pre>logPr(! hello pisa) = -0.0312 + logPr(! pisa) logPr(! pisa) = -0.15553 - 2.88382</pre>

M. Federico, FBK-irst

TrebleCLEF Summer School Pisa, 15-19 June 2009

Decoding in SMT

Given a statistical alignment model, a language model, and a source sentence, the **task of the search procedure** is to find the most likely translation:

$$\mathbf{e}^* = \operatorname*{argmax}_{\mathbf{e}} p(\mathbf{e}) \sum_{\mathbf{a}} p(\mathbf{f}, \mathbf{a} \mid \mathbf{e})$$

Often, we use the Viterbi or maximum approximation:

$$\mathbf{e}^* = \operatorname*{argmax}_{\mathbf{e}} p(\mathbf{e}) \max_{\mathbf{a}} p(\mathbf{f}, \mathbf{a} \mid \mathbf{e})$$

Complexity of decoding depends on word-reordering:

- no word-reordering: polynomial (Viterbi algorithm)
- only local word-reordering: high-polynomial
- arbitrary word-reordering: NP-hard

30

31

Decoding Complexity

Decoding with Alignment Model 1 and a 2-gram Language Model:

$$\mathbf{e}^{*} = \underset{l,e_{1},e_{2},...,e_{l}}{\operatorname{argmax}} \underbrace{p(e_{1} \mid \$) \cdot p(\$ \mid e_{l}) \cdot \prod_{i=2}^{l} p(e_{i} \mid e_{i-1})}_{\operatorname{Pr}(\mathbf{e})} \cdot \underbrace{\frac{p(m \mid l)}{(l+1)^{m}} \cdot \prod_{j=1}^{m} \sum_{i=1}^{l} p(f_{j} \mid e_{i})}_{\sum_{\mathbf{a}} \Pr(\mathbf{f}, \mathbf{a} \mid \mathbf{e})}$$

- Search might be limited to a fixed range of lengths for e, e.g. $l \leq 2m$
- Computing probabilities of AM and LM is fast
- If any f has at most k translations, search space size is $O(k^{2m})$
- Decoding with M1 is NP-hard, i.e. almost no hope for an efficient algorithm⁷.
 The proof uses a reduction from the Hamiltonian Circuit Problem
- Approximations: beam-search algorithm + limited word-reordering

⁷Result presented in K. Knight, "Decoding Complexity in Word-Replacement Translation Models", Computational Linguistics, 1999.

M. Federico, FBK-irst

TrebleCLEF Summer School

Pisa, 15-19 June 2009

³³ ENRAFESEER Multi-stack Search with Dynamic Programming

Basic steps of search:

- 1. pick hyp. from one stack
- 2. cover new source positions
- 3. generate translation options
- 4. score hypotheses
- 5. recombine hypotheses
- 6. put them into stacks
- 7. prune stacks

Stack N contains hypotheses covering N positions

Search is performed over phrases rather than single words, ...

- Constraints to reduce expanded theories:
 - reordering constraints: limit number of allowed permutations
- lexicon pruning: keep just most probable word translations
- Beam search to prune out less promising partial theories:
- threshold pruning: keep just theories close to the best theory in the stacks
- histogram pruning: keep at most M theories in the stacks
- Memory optimization:
 - garbage partial theories without successors
- Efficient representation and use of
 - Language Model probabilities: pruning, quantization, caching
 - Phrase-translation tables: pruning, quantization

Search with phrase-based translation can be performed with the Moses Toolkit⁸.

⁸P. Koehn, at al., "Moses: Open Source Toolkit for Statistical Machine Translation", Proc. ACL 2007.

```
M. Federico, FBK-irst
```

TrebleCLEF Summer School

Experimental research in HLT is conducted according to the following cycle

Evaluation bottleneck: MT developers need to monitor the effect of <u>daily</u> changes to their systems in order to weed out bad ideas from good ideas!

34

Evaluating MT Performance

How do we evaluate the output of a MT system?

• Human MT evaluation:

- criteria: adequacy, fidelity, and fluency
- pros: very accurate, high quality
- cons: expensive and slow
- Automatic MT evaluation:
- criteria: similarity with respect to one or more human translations
- pros: cheap, quick, correlates with human judgments
- cons: correlation is not always high, scores are not comparable across tasks **Example**
- BLEU: compute weighted sum of counts of the matching n-grams between output and references

M. Federico, FBK-irst TrebleCLEF Summer School Pisa, 15-19 June 2009

The State of the Art

- SMT is now a very competitive technology
 - in many evaluations SMT outperformed rule-based MT
 - commercial systems perform likely better when not enough data are available
- Interest in SMT revamped around seminal work at IBM in early 90' – indeed the whole thing was started by Warren Weaver in 1949
- Best performing SMT systems use either:
 - brute force direct translation exploiting huge amounts of data
 - combination of direct translation and syntax-driven models
- Automatic evaluation metrics have dramatically boosted research in SMT: - model training directly optimizes the evaluation metric
- Several evaluation campaigns are organized every year:
 - NIST: news texts Chi/Ara to Eng (2002-)
- IWSLT: travelers speech Chi/Jap/Ara/Ita to Eng (2004-)
- MT Workshop: European parliament, news EU languages (2005-)

Pisa, 15-19 June 2009

35

36

- Dubai 2 7 (AFP) The Secretary-General of the United Human Nations Kofi Annan said he would donate the international Zaved Prize for the Environment . which he received on Monday night in Dubai worth 500000 dollars, to setup a foundation for agriculture and educating girls in Africa .
- Dubai 2-7 (AFP) United Nations Secretary-General Machine Kofi Annan said that the award will Zayed International Environment, which received Monday evening in Dubai worth 500,000 dollars to establish an institution for agriculture and education of girls in the African continent.

38

Example 2: Chinese English

- Human Today was the Catholic Church's annual "Life Day". Pope Benedict XVI delivered a speech in St. Peter's Basilica. in which he criticized that the hedonism of wealthy society impairs the Christian value system of respect for life, and he strongly condemned abortion and euthanasia .
- Today is the "life" of the Catholic Church once a year, when Machine 16 of the pope delivered a speech in St. Peter's cathedral, criticized the joy of an affluent society, undermine the values of the Christian faith to respect life, and strongly condemned euthanasia and abortion.

M. Federico, FBK-i	rst TrebleCLEF Summer School	Pisa, 15-19 June 2009	M. Federico, FBK-irst	TrebleCLEF Summer School Pisa	a, 15-19 June
VE SLER	Example 1: Arabic English	39	FONDAZIONE BRONNO KESSLER		
Human	Dubai 2 - 7 (AFP) - The Secretary-General of the Nations Kofi Annan said he would donate the interr Zaved Prize for the Environment , which he recei	United national ived on		Example 2: Chinese English	
	Monday night in Dubai worth 500000 dollars , to s foundation for agriculture and educating girls in Afr	setup a ica .	Human (?)	Today was the Catholic Church's annual "Life Day " Benedict XVI delivered a speech in St . Peter's B in which he criticized that the hedonism ofour	'. Pope Basilica , wealthy
Machine	Dubai 2-7 (AFP) - United Nations Secretary- Kofi Annan said that the award will Zayed Interr Environment, which he received on	General national Monday		societywhich impairs the Christian value system respect for life , and he strongly condemned abort euthanasia .	stem of tion and
	evening in Dubai worth 500,000 dollars , will be c to establish an institution for agriculture and ed of girls in the African continent.	lonated ucation	Machine	Today is the "lifeday" of the Catholic Church year, when 16 of the pope delivered a speech in St. cathedral,he criticized the joy of an affluent that undermines the values of the Christia to respect life, and strongly condemned euthana	Peter's Society, an faith

Thank you

M. Federico, FBK-irst

TrebleCLEF Summer School

Pisa, 15-19 June 2009