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A TrebleCLEF
& Part |

* Automated Text Categorization (ATC):

— introduction and definition of the problem;
— representation of documents for ATC;

* Probabilistic models for ATC:

— Bernoulli Nailve Bayes model;
— multinomial Naive Bayes model
— two-dimensional model

» Cross-lingual Text Categorization

June 17 2009, Pisa, Italy Summer School




@)= What is Categorizaton?

« Categorization is the process of dividing
the world into groups of entities whose
members are in some way similar to each
other.

 These groups of entities, or categories,
are populated with members that share
some perceptible similarity within a given
context, that is the context may vary.
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@)= Ontology and Categories

« Ontology is the study of the basic categories of
being and their relations (and more).

— deals with questions concerning what entities exist or
can be said to exist

— how such entities can be grouped, related within a
hierarchy, and subdivided according to similarities
and differences

« Categories (IV B.C.) is a text from Aristotle's
“Organon” that enumerates all the possible kinds
of thing which can be the subject or the predicate
of a proposition.
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@ . TrebleCLEF
4

Supreme genus:

Differentiae:

Subordinate genera:

Differentiae:

Subordinate genera:

Differentiae:
Proximare genera:
Differentiae:

Species:

Individuals:

June 17 2009, Pisa, Italy

Tree of Porphiry (IV A.D.)

Substance

\
/

material immaterial

Spirit

\/
/

/

animate inanimate

/

Living Mineral

\/
/

sensitive insensitive

/
/

Animal

\
/

rational irrational

/
/

Human Beast

N\

Socrates Plato Aristotle etc.

Summer School




@)——<3 What is Text Categorization?

« When the entities to be categorized are textual
documents, the process of organizing sets of
documents into categories according to the
property of the documents and to the essential
properties of the category, is called Text
Categorization.

* When dealing with textual documents, different
views on these documents should be
distinguished, because each different view
underlines different properties for a document.
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@7 TrebleCLEF Text Categorization

e External attributes
e Logical structure
e Layout structure |

Author 1 Author 2
‘ Content * Section 1 * Sec I —
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P o What is Automated Text
y Categorization (ATC)?

* A general inductive process, the learner,
automatically builds a categorizer for the
categories involved in the process by
observing the properties of a set of pre-
classified documents (supervised learning).

* From these properties, the inductive process
learns the characteristics that a new unseen
document should have in order to be
categorized under a category.
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& Machine Learning

» Supervised Learning: given examples of
inputs and corresponding desired outputs,
predict on future inputs

* Unsupervised Learning: give only inputs,
automatically discover representations,
features, etc.
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@)=>=<.== Categorization vs Clustering

Cluster 1

© OO O Cluster 2
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@)=>=<.== Categorization vs Clustering
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. TrebleCLEF CategorizatiOn VS Clustering
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@,‘ TrebeCtEE Structure of Learning Machines

* Use a mathematical function z = f(x)
— X Is the representation of the input
— z is the representation of the output

* Hypothesis space and Parameters
—H : {f(z|x,0}

 How do we represent inputs/outputs and
select the hypothesis space?
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@ TrobleCLEF Representation of
y documents for ATC

« Set of terms that occur in the documents (Bag-of-words approach).

« A vocabulary V of term is needed to summarize and index the
document content.

« The selection of V is made by successive refinements:
— starting from an ideal/specific dictionary,
— removing stop-words (articles, prepositions, conjunctions, etc.),
— performing stemming (reduce terms to their roots),
— selecting most valuable terms (feature selection).

A document d is represented by numbers that represent the weight
w(-) of each term that appears in the document.

d = {W(t, ), W(ty, ) |

 When weights are non-binary, they are usually computed by either
statistical or probabilistic techniques.
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A TrebleCLEF I .
& Training vs Testing

« Training data: the X,Y we are given.
« Testing data: the X,Y we will see in future.

« Training error: the average value of loss on the training data.
« Test error: the average value of loss on the test data.

« What is our real goal? To do well on the data we have seen
already?

« How to do this if we don’t have test data?

* Are training and test documents sampled from the same
distribution?
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.% Probabilistic models for ATC

* Naive Bayes model
— Bernoulli model:;
— Multinomial model

* Visualization of Probabilistic Models
— two-dimensional model
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@7‘ IePleCLEE.  Naive Bayes Classifiers for ATC

« Bayesian classifiers are probabilistic approaches that
make strong assumptions about how the data is
generated, and build a probabilistic model that
embodies these assumptions.

— Use Bayes’ rule to estimate the probability P(c|d)

— Need a collection of labeled training examples to estimate
the probabilities of the model.

. Why Naive? P(cld):P(dlc)P(C); P(d|c)=TTP(t|c)

P(d) t

» How to classify documents? P(c|d)>P(c|d)
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@) ==<=  Bernoulli NB Model

A document is represented by a vector of binary

attributes indicating which terms occur and do not
occur in the document.

— The number of times a term occurs in a document is not
captured.

d= {tl’fz’ts’t4 }

 When calculating the probability of a document, you
multiply the probability of all the attribute values,

including the probability of non-occurrence for those
terms that do not occur in the document.

VI

P(d]c)= lk;[P(tk |c)*(1-P(t, |c)) ™
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@,‘ IebeCtEL  Learning Bernoulli NB Model

 Maximum Likelihood Estimates (MLE)
— Use frequencies in the training data set

 Problems with MLE

— What if we have no examples in the training
data set?

— How do we deal with zero probabilities?
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@)= Smoothing probabilities

» Laplace smoothing
— Add 1 to all frequency counts
— Pros: easy to compute

— Cons: give to much probability mass to unseen
events

« Add “delta” to compute the extent of
smoothing

* And many others...
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A TrebleCLEF - -
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@)= Multinomial NB Model

« A document is represented by a (multi-)set of
terms that occur in the document.

— The order of the terms is lost

— the number of occurrences of each term in the
document is captured.

= {ts’ti’ts’ts’t4 }

 When calculating the probability of a document,
only the probability of the terms that occur count.

|d| VI

HP |c)

P(d|c)=P(d)
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. =22t NB models: time complexity

* Training Time
* Test Time

* Linearly proportional
— Just read in all the data
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& Any difference?

VI

P(c|d)>P(c|d) TP, |c)(1-P(, )™ P(c)
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B TrebleCLEF
@7 Yes...maybe

H(P(tk lc)*(1-P(t, |c)) )D(C)

v 9
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& Definitely maybe!

v P(tk C)(l- P(tk ‘CD v (1- P(’[k C] P(C)
1
o) Mg e
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&)= Two-dimensional model

* |n the two-dimensional representation of
documents, two coordinates X(d) and Y, (d)
are calculated for each document d of a

category c..

G. M. Di Nunzio, A. Micarelli, Pushing "Underfitting" to the Limit: Learning in Bidimensional
Text Categorization, in: R. L. de Mf[antaras, L. Saitta (Eds.), Proceedings of the 16th
Eureopean Conference on Arti cial Intelligence (ECAI 2004), including Prestigious
Applicants of Intelligent Systems (PAIS 2004), IOS Press, 2004, pp. 465-4609.

* Rewrite log-odds

G. M. Di Nunzio, Visualization and Classification of Documents: A New Probabilistic Model
to Automated Text Classification, Bulletin of the IEEE Technical Committee on Digital

Libraries (IEEE-TCDL) 2 (2).
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, TrebleCLEF
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&)~ 2D model - Multinomial
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@; TrebleCLEE 2D — Improving perfomance

« A better separation of the documents is reached when the plane is
split into two regions

« G. Di Nunzio. Using Scatterplots to Understand and Improve Probabilistic Models for
Text Categorization and Retrieval. International Journal of Approximate Reasoning, In
Press 2009. http://dx.doi.org/10.1016/j.ijar.2009.01.002.
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& Cross-lingual TC

 Motivations

— Extend ATC system in order to classify
documents in different languages

* Most applications of TC, e.g. digital libraries,
news wire filtering as well as Web page and
e-mall categorization, are interesting
applications of multilingual text classification
(MLTC), where documents given in different
languages are to be classified by topic or
similar criteria.
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@,‘ TR CLTC vs CLIR

 CLIR: formulate a query in one language
and retrieve documents in other languages

 CLTC.: classify documents in several
languages

* Both need similar linguistic resources
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@7‘ TrebleCLEF CLTC data

 CLTC need multilingual resources

— some training documents in other languages
* Non translated but supplied with a class label
» Translated but without class label.

ILO corpus: English and Spanish documents
(only a couple of thousands each language)

Reuter Corpus RCV2: about 500,000 reuters
stories in 13 different languages

Parallel corpora
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@7 TrebleCLEF CLTC approaches 1/3

Poly-lingual
— the system is trained using training examples
from all the different languages.

— a single classifier is build using a set of
labeled training documents in all languages,

which will r\lacclf\/ documents from different

languages.
— no translation strategies
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@7 TrebleCLEF CLTC approaches 2/3

* Cross-lingual

— use labeled training for one language to classify
documents in other languages

— Training-Set Translation: the labeled set is
translated into the target language which then is
used to train a classifier for this language.

— Test-Set Translation: translate the unlabelled
documents into one language (L1). To classify
the unlabelled translated documents, the system
IS trained using the labelled training set for
language (L1).
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@7 TrebleCLEF CLTC approaches 3/3

* Esperanto language:

— use a universal reference language which all
documents are translated to.

— This universal language should contain all
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J—==S=E CLTC example of architecture
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.W CLTC example of architecture

ultilingual Text Categorization Systemn

SVM SVM SVM SVM

classifier a classifier b classifier ¢ oL classifier n

:

1] C mn
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TrebleCLEF

CLTC example of architecture

Parallel Texts
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. TrebleCLEF Part I I

* Query Classification

* Log Analysis
— Web (HTTP) Log Analysis
— Query (Search) Log Analysis

* Logging Digital Libraries
— The European Library Case Study

 LogCLEF 2009
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@)% Query Classification

» Classification of user queries allows for
increased effectiveness, and efficiency, in
general-purpose Web search systems.

* Query classification poses a challenging
problem, as web queries are very short.

* This data sparseness, and the dynamic
nature of user queries makes the traditional
methods of text categorization less effective.
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.wﬁ. Query Classification

* The problem of query classification can be
split into two groups:
— Query types
— Query topics
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A TrebleCLEF -
& Log Analysis

 The term log is used today in the context of a
systematic and chronological collection of events:

— user log;
— system log;
— server log.

* We use the name "Web log" for the log file which
contains the HT TP requests made from clients to the
Web server of a Web site.

* We use the name “Query log" for the log file which
contains the queries issued by users to search
engines.
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@7‘ IePRSEEY. The importance of being logged...

* Logging is an implicit way of observing the user in
an unbiased way

« Assuming adequate storage and infrastructure
exists (not easy, see next), there are many
limitations and biases to consider

— Measure how and what, rather than “why”
— Completely unlabeled

— Can only measure the system being logged
— Noisy

— Don’t necessarily allow long-term studies
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A TrebleCLEF -
& Managing logs

 |nformation contained in logs (and logs themselves)
has to be managed efficiently for analyses.

« A database management system enable separation of
the different entities recorded and facilitate data-
mining and on-demand querying of the log data.

« Since log files usually come in a text format, there is
the problem of how to transfer the huge amount of
data into a DB.

M. Agosti and G. M. D. Nunzio. Web log mining: A study of user sessions. 10th DELOS Thematic
Workshop on Personalized Access, Profile Management, and Context Awareness in Digital Libraries,
June 2007.
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& Logs and formats

 Several formats available for servers to build
their log files.

* World Wide Web Consortium Extended Log
File Format

— It extends the Common Log File Format
overthrowing its main limit, which was the fixed
amount of information about each transaction:;

— control recorded data;

— customize the choice of the fields of the record of
a log to be stored.

June 17 2009, Pisa, Italy Summer School




& Web Log Analysis

* Web log file analysis began with the purpose
to offer to Web site administrators a way to
ensure adequate bandwidth and server
capacity to their organization.

* |t may offer advices about
— a better way to improve the offer of Web content,

— information about problems occurred to the users,
— problems for the security of the site.
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& Web Log Analysis

June 17 2009, Pisa, Italy Summer School

Web sites are created and adapted to made contents more
easily accessible, using profiles found to make
recommendations or to target users with ad hoc advertising.

An ideal environment would dispose of exact history and
information about a user, permitting to know his tastes and
needs:

— using user authentication,
— or cookie files.

Not always possible: privacy issues step in, and this kind of
information may be not available.

M. Agosti, G. Angelaki, T. Coppotelli, and G. M. D.Nunzio. Analysing http logs of a
european DL initiative to maximize usage and usability. ICADL 2007 pages 35-44, 2007.




& Web log format

 Web log files have ordered fields to record activities:
— date: Date, in the form of yyyy-mm-dd.
— time: Time, in the form of hh:mm:ss.
— s-ip: The IP of the server.
— cs-method: The requested action. Usually GET for common users.
— cs-uri-stem: The URI-Stem of the request.
— cs-uri-query: The URI-Query, where requested.
— s-port: The port of the server for the transaction.
— cs-username: The username for identi cation of the user.
— c-ip: The IP address of the client.

— cs(User-Agent): User-Agent of the Client. For a standard user this
means the browser and other information about operative system.

— cs(Referer): The site where the link followed by the user was located.

— sc-status: HTTP status of the request, that means the response of the
server.

— sc-substatus: The substatus error code.
— sc-win32-status: The Windows status code.
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&)< Web Log File Example

o« 2005-11-30 23:00:37 192.87.31.35 GET /index.htm - 80 -
152.xxx.xxx.xxx Mozilla/4.0+(compatible; ...

« 2005-11-30 23:00:38 192.87.31.35 GET /portal/index.htm - 80 -
152 .xxx.xxx.xxx Mozilla/4.0+( ...

« 2005-11-30 23:00:38 192.87.31.35 GET /portal/scripts/Hashtable.js -
80 - 152.xxx.xxx.xxx Mozilla/4.0+

« Gathering data from user agents

— User agent string may offer great amount of information useful to
optimize and personalize Web sites.

— Itis a valuable source that gives hints about
* browsers,
» operating systems used by users,
« and even analyze the activity of crawlers.

There are no standards that define it.
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& Storing log files

« The design of the DataBase (DB) may begin with the analysis of the
raw log files and followed by the identification of each entity with a
top-down approach, starting from the main entity Request

« The main entities identified can be:

client;
useragent;
request;
uristem;
server.

« More entities can be identified to model post-hoc analyses on the
identification of sessions according to different heuristics:
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session;
heuristic.




.wﬁ. Identification of sessions

N _~

(]

with Searc_h/
authentication Browsing

without GET GET GET
authentication /index.html /image.gif /script.jsp

June 17 2009, Pisa, Italy Summer School




&) =%  Query Log Analysis

* The goal of a search engine is to have indexed the
right pages for any user search, and to effectively

retrieve them in response to the query supplied by
the user.

* In order to accomplish these goals, the search
engine must:

— “Understand” the intent of the search query

— Have indexed the correct pages, documents, or
materials

— Be able to effectively order and retrieve the right
pages with respect to the intent of the user query.
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@)%  Query Log Analysis

* Query logs are one of the largest sources of data
potentially available to a search engine.

* The main advantage of query logs is that they have a
diversity of tasks, queries, user experiences that is
difficult, if not ImpOSSIble to duplicate in any other data
source.

* However, this diversity is completely unlabeled:
— We know a user did a query
— We do NOT know what the user meant by it

— We do NOT know whether the user was happy with the
result.
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@)~ Evaluation of Digital Libraries

 Digital libraries (DL) are complex systems for
which specific set of important issues has to
be considered, such as
— the construct of evaluation
 \What was evaluated, what elements
— the context of evaluation
« Selection of a goal, a level of evaluation
— the criteria
« What parameters of performance were concentrate on

— the methodology

 What measures and measuring instruments were used
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&)= Logging Digital Libraries

* Transaction log analysis, a widely used technique that
examines the activity of users in a given time session

— collect and analyze all traces of a user’s choices during a
work session and thus create meaningful models of usage

— New log formats?

* Need of research based techniques that require users’
participation, observation and recording of their
actions.

M. Agosti. Log data in digital libraries. In M. Agosti, F. Esposito, and C. Thanos,
editors, IRCDL, pages 115-122. DELOS: an Association for Digital Libraries, 2008.
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@ |TrebIeCLEF USI”g dlfferent
y sources of logs

* The interaction between the user and a system can be
analyzed
— Explicitly, for example questionnaires,
— Implicitly, for example log analysis

* A systematic use of the triangulation of different data
collection techniques as a general approach can be
used to get better knowledge of the information search
process

M. Agosti, F. Crivellari, and G. M. Di Nunzio. A method for combining and analyzing
implicit interaction data and explicit preferences of users. Workshop on Contextual
Information Access, Seeking and Retrieval Evaluation (ECIR 2009), April 20009.
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@ Tevecer | NE€ EUropean Library
y Case Study

 The European Library is a free service that offers
access to the resources
— of the 48 national libraries of Europe
— in 20 languages
— about 150 million entries across Europe

AIIAN n VY 2N 2 Alﬂlllﬁlﬁ

¢ TE p usS ib a IJIUjU l.lldl. Ib Veilly Ldt\UII 1rvwdl u Uy
a consortium of 26 partners, national libraries and
research centers to form a pool of research and
iInnovation to provide value-adding services and
products for TEL.
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TrebleCLEF TEL EnV”'Onment 1/2
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rebleCLER Different sources,
different information (1)

« HTTP log data

* Reconstruct from the logs the history of the
browsing activity

* Analysis
— Traffic analysis/type of traffic
— Session reconstruction/analysis
— Geographic provenance
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@) s Different sources,
y different information (2)

« Action/search log data

« Reconstruct from the logs the history of queries and
documents (i.e., search results) clicked on after the
user has seen the result page

* Analysis
— Session reconstruction/analysis
— Rephrase queries
— Switch to search material for a new topic
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TrebleCLEF Different sources,
different information (3)

 Questionnaire data

« Gather user preferences and satisfaction

* Analysis
— Parts of the Web site
— Clarity of the Web site
— Level of satisfaction
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& User Studies

* A user’s study was conducted by UNIPD
(November/December 2007, April/May 2008)

* Different groups of students

— Humanities: 188
— Statistics: 6

— Psychology: 22

* Total of 216 students
— Only 155 were correctly found in the logs

June 17 2009, Pisa, Italy Summer School




&)= Towards LogCLEF 2009
* Log analysis initiatives in CLEF

* ICLEF (since 2001)

— Investigate cross-language searching as an
interactive task, examining the process as well as the
outcome.

* LogCLEF (pilot task 2009)

— http://www.uni-hildesheim.de/logclef/
— analysis of queries as expression of user behavior

— Log Analysis and Geographic Query Identification
(LAGI)

— Log Analysis for Digital Societies (LADS)
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