	TechNote-ADDENDUM-Islandora
Atos Origin, 2011-04
	[image: image2.jpg]

[image: image2.jpg]
ECP-2008-DILI-518001

BHL-Europe

Technical Note

BHL-Europe Fedora Commons Reference Documentation
	Deliverable number
	TN-Addendum-Islandora

	Dissemination level
	Confidential

	Delivery date
	2011-04

	Status
	Draft

	Author(s)
	Lee Namba

[image: image1.jpg]
eContentplus

This project is funded under the eContentplus programme
,
a multiannual Community programme to make digital content in Europe more accessible, usable and exploitable.
Table of contents

31
Document History

31.1
Contributors

31.2
Revision History

31.3
Distribution

42
Purpose of this document

43
Installation and Configuration

43.1
Requirements

43.1.1
Pre-installation software checklist:

53.2
Installation

53.2.1
Drupal Servlet Filter

73.2.2
The Islandora Module

94
Using Islandora

94.1
Islandora Collection Objects

94.2
COLLECTION_POLICY

124.3
COLLECTION_VIEW

204.4
CHILD_SECURITY

214.5
QUERY

224.6
Islandora Content Models

234.7
Collection & Object Administration

245
Appendix

245.1
Drupal

255.2
Fedora

1 Document History

1.1 Contributors

This document is a reference document and is composed of excerpts from documentation taken directly from the Islandora website (https://wiki.duraspace.org/display/ISLANDORA).
	Person
	Partner

	Lee Namba
	ATOS

1.2 Revision History

	Revision Date
	Author
	Version
	Change Reference & Summary

	2011-04
	Lee Namba
	0.1
	1. Draft

	
	
	
	

	
	
	
	

1.3 Distribution

This document has been distributed to:

	Group
	Date of issue
	Version

	
	
	

	
	
	

	
	
	

Purpose of this document

Islandora is an open-source framework developed by the University of Prince Edward Island's Robertson Library.

Islandora uniquely combines and harnesses the power of the Drupal content management system and the Fedora Digital Repository software to create a robust digital asset management system that can be fitted to meet the short and long-term collaborative requirements of digital data stewardship.
This document is a reference document and is composed of excerpts from documentation taken directly from the Islandora website (https://wiki.duraspace.org/display/ISLANDORA). We have edited the relevant text as is applies to the BHL Europe system.
It aims to aggregate the essential Islandora documentation for developers and maintainers of the BHL Europe system.

2 Installation and Configuration

2.1 Requirements

To successfully install Islandora, a site administrator should ideally have experience with configuring and trouble-shooting issues on a UNIX-based web server and with using UNIX command-line functions.

In addition, a site administrator should have or obtain a basic understanding of the following:

· Drupal (www.drupal.org)

· Fedora Repository (http://www.fedora-commons.org)

· Foxml 1.1 (http://www.fedora-commons.org/documentation/3.0b2/userdocs/digitalobjects/introFOXML.html)

2.1.1 Pre-installation software checklist:

The Islandora framework relies upon a number of other open-source applications. Before beginning the installation of any Islandora modules, ensure:

1. You have Drupal installed and properly configured with:

· Clean URLs enabled in Drupal

· The Drupal file system set to public

2. You have Fedora installed and properly configured:

· Ensure you can use the admin tools in Fedora to ingest and purge.

· A requirement for collection objects: To make the module more flexible and useful we have also made some specific decisions regarding our Fedora objects. For the module to be able to browse collections, your collection objects must have a hasModel entry in the RELS-EXT datastream that points to islandora:collectionCModel. This lets the module know that the object represents a collection and it will then query for objects that are members of this collection.

3. Other requirements beyond what is needed by Fedora and Drupal include:

· PHP5-curl

· PHP5-soap

· PHP5-xsl

It is advisable to review the help documentation if you are unfamiliar with these applications.

At the end of this installation, you will be ready to populate your site with digital assets and be capable of accepting Solution Packs.

2.2 Installation

2.2.1 Drupal Servlet Filter

The Drupal Servlet Filter allows the Fedora Repository to use Drupal’s database for authentication and retrieving user roles.

2.2.1.1 Installation Steps

1. Download the latest version of the Drupal Servlet Filter from the Islandora github distribution site (https://github.com/Islandora/Islandora-dist/) and place it in $FEDORA_HOME/tomcat/webapps/fedora/WEB-INF/lib  
Ensure you choose the correct jar file for i) your version of Fedora, and ii) your authentication type (FeSL or legacy).  
Note: If your Drupal and Fedora installations use different database types, Fedora will require the Drupal database driver's jar file in this directory as well. For instance, if Fedora uses postgres and Drupal uses MySQL, Fedora will require the MySQL jar file for the Drupal Servlet Filter in order to connect to the Drupal database.

2. Make the Fedora Repository aware of the new filter by following the instructions for Legacy Authentication:  
2.2.1.1.1 Legacy Authentication

new xml elements must be added in order to configure Fedora's servlet filtering.

Edit the web.xml file located in $FEDORA_HOME/tomcat/webapps/fedora/WEB-INF/ to include a reference to the Drupal Servlet Filter. Immediately after the <filter> element named XmlUserfileFilter, insert the following:

<filter>

 <filter-name>DrupalFilter</filter-name>

 <filter-class>ca.upei.roblib.fedora.servletfilter.FilterDrupal</filter-class>

</filter>

Then, immediately after the <filter-mapping> element named XmlUserfileFilter, insert the following:

<filter-mapping>

 <filter-name>DrupalFilter</filter-name>

 <url-pattern>/*</url-pattern>

</filter-mapping>

2.2.1.1.2
3. Enable the Drupal Servlet Filter by creating the file filter-drupal.xml in $FEDORA_HOME/server/config. Copy the following text as a template, then modify the attributes of the <connection> tag to match the server, port, database name, username and password of your site's Drupal database. Note: Fedora requires a separate <connection> entry for each connecting Drupal site.

<?xml version="1.0" encoding="UTF-8"?>

<!--File to hold drupal connection info for the FilterDrupal servlet filter. For multisite drupal installs you can include multiple connection elements. We will query all the databases and assume any user in any drupal db with the same username and password are the same user. We will gather all roles for that user from all databases. This is a potential security risk if a user in one drupal db has the same username and password as another user in a separate drupaldb. We are also assuming all drupal dbs to be mysql. This file should be located in the same directory as the fedora.cfcg file-->

<FilterDrupal_Connection>

 <connection server="localhost" dbname="drupaldb" user="dbuser" password="password" port="3306">

 <sql>

 <!--Different sql statement for each connection. This is for drupal multisites that are setup using one database with table prefixes. We don't do this but some people might.-->

 SELECT DISTINCT u.uid AS userid, u.name AS Name, u.pass AS Pass, r.name AS Role FROM (users u LEFT JOIN users_roles ON u.uid=users_roles.uid) LEFT JOIN role r ON r.rid=users_roles.rid WHERE u.name=? AND u.pass=?;

 </sql>

 </connection>

</FilterDrupal_Connection>

4. Stop and restart Fedora to enable the Drupal Servlet Filter. 
5. Test the Drupal Servlet Filter by accessing your Fedora Admin client using your Drupal login credentials.

2.2.2 The Islandora Module

The Islandora module is a Drupal module written to allow the Drupal content management system to act as a front end to a Fedora Digital Repository. The module enables viewing and management of Fedora objects. This includes ingest, purge, add data stream, searching and browsing by collection. This version of the module does not store any data regarding any of the Fedora Objects in the Drupal database. The only data stored in Drupal is the configuration data telling Drupal how to connect to Fedora.

Future versions of the module may store metadata and/or links to datastreams regarding the Fedora object in the Drupal database. This would enable a Fedora-linked node to be used in the standard Drupal ways, but would also lead to the duplication of data and the problem of keeping Drupal and Fedora in sync. The Islandora team is interested in ideas on how to make this work most efficiently.

To install the Islandora Module:
1. Download the latest version of the module from http://www.github.com/islandora and place the uncompressed contents of the module in your sites/all/modules or the sites/default/modules directory. For multi-site Drupal environments, refer to the Drupal.org instructions.

2. Enable the module by logging in to Drupal and navigating to Administration > Modules. Locate the module entitled Fedora Repository from the list of modules and enable the Digital Repository component of the module. Note: If there are missing dependent modules, ensure you have installed and enabled these to properly utilize Islandora.

You have now enabled the Islandora module. Navigate to your newly created Digital Repository menu item to view the objects from your Fedora Repository through your web site.

If no objects are found in your Digital Repository, you can quickly populate Fedora with some demo objects. To do this, go to Administer > Site Configuration > Fedora Collection List. Check the default information that populates the collection list form fields and your connection to the Fedora database. Then, select the Solution Packs tabs at the top of your page.

If you encounter problems with your Islandora configuration, check the following:

1. Your Fedora connection information is correct: The Fedora RISearch URL will, by default, specify localhost for your Fedora server name. If you are not using localhost, ensure you have entered your Fedora server's IP or domain name.

2. You have the appropriate user permissions to determine who can do what to Fedora objects from within Drupal. (need a bit more info on this)

3. The Fedora Default Display Object PID and Fedora Datastream ID are the defaults used by Drupal when it can't find a PID/datastream. Ensure these point to an object/datastream that is known to exist in your Fedora repository. Usually this will be an image indicating object not found or image not available.  PID namespaces allowed in this Drupal install is a space-separated enumeration. Only Fedora objects identified by the members of this enumeration will be visible to users of this site. Similar to the retain PID namespaces in the older versions of Fedora config file.

3 Using Islandora

3.1 Islandora Collection Objects

An Islandora Collection Object is a Fedora object with several required datastreams. A familiarity of Fedora’s object model is therefore essential to properly understanding the concepts underlying the creation and manipulation of collection objects in Islandora. The following documents offer a grounding in Fedora’s Digital Object Model and Content Model Architecture:

· Fedora Digital Object Model: https://wiki.duraspace.org/display/FCR30/Fedora+Digital+Object+Model
· Tutorial 2: Creating Fedora Objects Using the Fedora Content Model Architecture: http://www.fedora-commons.org/documentation/3.0b1/userdocs/tutorials/tutorial2.pdf
In Islandora, collection objects must have a hasModel relationship to the islandora:collectionCModel and they must have a COLLECTION_POLICY datastream. This relationship tells Islandora that this Fedora object is a collection object. Islandora can then query the resource index for objects that have a relationship of isMemberOfCollection to this collection object.

The isMemberOfCollection is the default relationship used by Islandora, you can use others by specifying the relationship element in the collection policy xml. You would then have to store a QUERY datastream in the collection object.

The Collection Object defines four datastreams:

COLLECTION_POLICY
COLLECTION_VIEW
CHILD_SECURITY
QUERY

3.2 COLLECTION_POLICY

A Collection policy is an XML data-stream in a Fedora object with a DSID of COLLECTION_POLICY. The collection policy defines what content models may be ingested and related to this collection object. An example of a COLLECTION_POLICY may look something like this:

<collection_policy xmlns="http://www.islandora.ca"
xmlns:xsi="http://www.w3.org/2001/XMLSchema-instance"
name="" xsi:schemaLocation="http://www.islandora.ca http://

syn.lib.umanitoba.ca/collection_policy.xsd">

<content_models>

<content_model dsid="ISLANDORACM" name="REFWORKS"
namespace="ir:ref" pid="islandora:refworksCModel"></

content_model>

<content_model dsid="STANDARD_PDF"
name="STANDARD_PDF" namespace="vre:ref"
pid="vre:contentmodel"></content_model> <content_model

dsid="ISLANDORACM" name="Collection"
namespace="islandora:collection"
pid="islandora:collectionCModel"></content_model>

</content_models>

<search_terms>

<term field="dc.title">dc.title</term>

<term field="dc.creator">dc.creator</term>

<term default="true" field="dc.description">dc.description</

term>

<term field="dc.date">dc.date</term>

<term field="dc.identifier">dc.identifier</term>

<term field="dc.language">dc.language</term>

<term field="dc.publisher">dc.publisher</term>

<term field="dc.rights">dc.rights</term>

<term field="dc.subject">dc.subject</term>

<term field="dc.relation">dc.relation</term>

<term field="dcterms.temporal">dcterms.temporal</term>

<term field="dcterms.spatial">dcterms.spatial</term>

<term field="fgs.DS.first.text">Full Text</term>

</search_terms>

40

<relationship></relationship>

</collection_policy>

The Collection Policy above would allow either of twotypes of objects to be ingested - STANDARD_PDF and REFWORKS. How these are ingested and viewed is determined in the actual CONTENT_MODEL data stream.

Required for Ingest: The Islandora module requires a collection object to have a COLLECTION_POLICY datastream if additional objects are to be ingested as members of that collection object.

Adding a Collection Policy to a Collection Object
As described earlier, a Collection Policy is a data-stream (COLLECTION_POLICY) in a Collection or Parent-type Object that declares what other objects this object is allowed to be related to on ingest. It can optionally specify the relationship to use. If there is no relationship element, the default relationship will be isMemberOfCollection. Below is a snippet of the COLLECTION_POLICY stream that was added to the demo:SmileyStuff object:

<contentmodels>

<contentmodel name="STANDARD_JPEG">

<pid_namespace>demo:Smiley</pid_namespace>

<pid>demo:DualResImage</pid>

<dsid>ISLANDORACM</dsid>

</contentmodel>

</contentmodels>

41

<relationship>fedora:isMemberOf</relationship><!-- the demo

Smiley Stuff QUERY stream queries for isMemberOf

so we will use that relationship on ingest-->

Creating a COLLECTION_POLICY stream is similar to creating an ISLANDORACM stream in that you will have to create the XML by hand. It is probably best to start with an example collection policy, edit the example and save it as a different name. You can use the Fedora Admin client to add the COLLECTION_POLICY stream or use Islandora itself by browsing to the Collection object, expanding the detailed list of content and adding the data-stream. The main requirement is that the data-stream have a dsid of COLLECTION_POLICY.

You can review the COLLECTION_POLICY datastreams in the collection objects that ship with Islandora.

Some additional examples that are available online:

Fraction COLLECTION_POLICY https://wiki.duraspace.org/download/attachments/11502608/fractions_COLLECTION_POLICY.xml
Standard PDF COLLECTION_POLICY https://wiki.duraspace.org/download/attachments/11502608/PDF-COLLECTION+POLICY.xml
3.3 COLLECTION_VIEW

The collection object's optional COLLECTION_VIEW data stream holds an XSLT to define how objects in that collection are displayed. Here is an example of a
COLLECTION_VIEW:

<?xml version="1.0" encoding="UTF-8"?>

<xsl:stylesheet xmlns:xsl="http://www.w3.org/1999/XSL/

Transform" xmlns:s="http://www.w3.org/2001/sw/DataAccess/rf1/

result" version="1.0">

<!-- Red and White XSLT -->

<xsl:variable name="BASEURL">

<xsl:value-of select="$baseUrl"/>

</xsl:variable>

<xsl:variable name="PATH">

<xsl:value-of select="$path"/>

</xsl:variable>

<xsl:variable name="thisPid" select="$collectionPid"/>

<xsl:variable name="thisTitle" select="$collectionTitle"/>

<xsl:variable name="size" select="20"/>

<xsl:variable name="page" select="$hitPage"/>

<xsl:variable name="start" select="((number($page) - 1) *

number($size)) + 1"/>

<xsl:variable name="end" select="($start - 1) + number($size)"/>

<xsl:variable name="cellsPerRow" select="4"/>

<xsl:variable name="count" select="count(s:sparql/s:results/

s:result)"/>

<xsl:template match="/">

<xsl:if test="$count>0">

<table cellpadding="3" cellspacing="3" width="90%">

<tr><td colspan="{$cellsPerRow}">

<div STYLE="text-align: center;">

<xsl:choose>

<xsl:when test="$end >= $count and $start = 1">

<xsl:value-of select="$start"/>-<xsl:value-of select="$count"/>

of <xsl:value-of select="$count"/>

</xsl:when>

<xsl:when test="$end >= $count">

<xsl:value-of select="$start"/>-<xsl:value-of select="$count"/>

of <xsl:value-of select="$count"/>

<a>

<xsl:attribute name="href"><xsl:value-of select="$BASEURL"/

>/fedora/repository/<xsl:value-of select="$thisPid"/>/-/<xsl:valueof

select="$thisTitle"/>/<xsl:value-of select="$page - 1"/>

</xsl:attribute>

<<Prev

</xsl:when>

<xsl:when test="$start = 1">

<xsl:value-of select="$start"/>-<xsl:value-of select="$end"/>

of <xsl:value-of select="$count"/>

<a>

<xsl:attribute name="href"><xsl:value-of select="$BASEURL"/

>/fedora/repository/<xsl:value-of select="$thisPid"/>/-/<xsl:valueof

select="$thisTitle"/>/<xsl:value-of select="$page + 1"/>

</xsl:attribute>

Next>>

</xsl:when>

<xsl:otherwise>

<xsl:value-of select="$start"/>-<xsl:value-of select="$end"/>

of <xsl:value-of select="$count"/>

<a>

<xsl:attribute name="href"><xsl:value-of select="$BASEURL"/

>/fedora/repository/<xsl:value-of select="$thisPid"/>/-/<xsl:valueof

select="$thisTitle"/>/<xsl:value-of select="$page - 1"/>

</xsl:attribute>

<<Prev

<a>

<xsl:attribute name="href"><xsl:value-of select="$BASEURL"/

>/fedora/repository/<xsl:value-of select="$thisPid"/>/-/<xsl:valueof

select="$thisTitle"/>/<xsl:value-of select="$page + 1"/>

</xsl:attribute>

Next>>

</xsl:otherwise>

</xsl:choose>

</div> <br clear="all" />

</td></tr>

<!--<xsl:for-each select="/sparql/results/result[position()>=$start

and position() <=$end]">

<xsl:variable name='OBJECTURI' select="object/@uri"/>

<xsl:variable name='PID' select="substring-after

($OBJECTURI,'/')"/>

<tr>

<td>

<xsl:attribute name="src"><xsl:value-of select="$BASEURL"/

>/fedora/repository/<xsl:value-of select="$PID"/>/TN

</xsl:attribute>

<a>

<xsl:attribute name="href"><xsl:value-of select="$BASEURL"/

>/fedora/repository/<xsl:copy-of select="$PID"/>/-/<xsl:value-of

select="title"/>

</xsl:attribute>

<xsl:value-of select="title"/>

</td>

</tr>

</xsl:for-each>-

-->

<xsl:apply-templates select="s:sparql/s:results"/>

</table><br clear="all" />

<div STYLE="text-align: center;">

<xsl:choose>

<xsl:when test="$end >= $count and $start = 1">

<xsl:value-of select="$start"/>-<xsl:value-of select="$count"/>

of <xsl:value-of select="$count"/>

</xsl:when>

<xsl:when test="$end >= $count">

<xsl:value-of select="$start"/>-<xsl:value-of select="$count"/>

of <xsl:value-of select="$count"/>

<a>

<xsl:attribute name="href"><xsl:value-of select="$BASEURL"/

>/fedora/repository/<xsl:value-of select="$thisPid"/>/-/<xsl:valueof

select="$thisTitle"/>/<xsl:value-of select="$page - 1"/>

</xsl:attribute>

<<Prev

</xsl:when>

<xsl:when test="$start = 1">

<xsl:value-of select="$start"/>-<xsl:value-of select="$end"/>

of <xsl:value-of select="$count"/>

<a>

<xsl:attribute name="href"><xsl:value-of select="$BASEURL"/

>/fedora/repository/<xsl:value-of select="$thisPid"/>/-/<xsl:valueof

select="$thisTitle"/>/<xsl:value-of select="$page + 1"/>

</xsl:attribute>

Next>>

</xsl:when>

<xsl:otherwise>

<xsl:value-of select="$start"/>-<xsl:value-of select="$end"/>

of <xsl:value-of select="$count"/>

<a>

<xsl:attribute name="href"><xsl:value-of select="$BASEURL"/

>/fedora/repository/<xsl:value-of select="$thisPid"/>/-/<xsl:valueof

select="$thisTitle"/>/<xsl:value-of select="$page - 1"/>

</xsl:attribute>

<<Prev

<a>

<xsl:attribute name="href"><xsl:value-of select="$BASEURL"/

>/fedora/repository/<xsl:value-of select="$thisPid"/>/-/<xsl:valueof

select="$thisTitle"/>/<xsl:value-of select="$page + 1"/>

</xsl:attribute>

Next>>

</xsl:otherwise>

</xsl:choose>

</div>

</xsl:if>

</xsl:template>

<xsl:template match="s:sparql/s:results">

<xsl:for-each select="s:result[position() mod $cellsPerRow = 1

and position()>=$start and position() <=$end]">

<tr>

<xsl:apply-templates select=". | following-sibling::s:result

[position() < $cellsPerRow]"/>

</tr>

</xsl:for-each>

</xsl:template>

<xsl:template match="s:result">

<xsl:variable name='OBJECTURI' select="s:object/@uri"/>

<xsl:variable name='CONTENTURI' select="s:content/@uri"/>

<xsl:variable name='CONTENTMODEL' select="substring-after

($CONTENTURI,'/')"/>

<xsl:variable name='PID' select="substring-after

($OBJECTURI,'/')"/>

<xsl:variable name="newTitle" >

<xsl:call-template name="replace-string">

<xsl:with-param name="text" select="s:title"/>

<xsl:with-param name="from" select="'_'"/>

<xsl:with-param name="to" select="' '"/>

</xsl:call-template>

</xsl:variable>

<xsl:variable name="linkUrl">

<xsl:choose>

<xsl:when

test="($CONTENTMODEL='islandora:collection')">

<xsl:value-of select="$BASEURL"/>/fedora/repository/

<xsl:copy-of select="$PID"/>/-/<xsl:value-of select="s:title"/>

</xsl:when>

<xsl:otherwise>

<xsl:value-of select="$BASEURL"/>/fedora/repository/

<xsl:copy-of select="$PID"/>/OBJ/<xsl:value-of select="s:title"/>

</xsl:otherwise>

</xsl:choose>

<xsl:value-of select="s:content"/>

</xsl:variable>

<td valign="top" width="25%">

<a>

<xsl:attribute name="href"><xsl:value-of select="$linkUrl"/>

</xsl:attribute>

<xsl:attribute name="src"><xsl:value-of select="$BASEURL"/>/

fedora/repository/<xsl:value-of select="$PID"/>/TN

</xsl:attribute>

<xsl:attribute name="alt"><xsl:value-of select="$newTitle"/>

</xsl:attribute>

 <br clear="all" />

<a>

<xsl:attribute name="href"><xsl:value-of select="$linkUrl"/>

</xsl:attribute>

<xsl:value-of select="$newTitle"/>

<xsl:if test="($CONTENTMODEL!

='islandora:collectionCModel')">

--<a>

<xsl:attribute name="href">

<xsl:value-of select="$BASEURL"/>/fedora/repository/

<xsl:copy-of select="$PID"/>/-/<xsl:value-of select="s:title"/>

</xsl:attribute>

DETAILS

--

</xsl:if>

</td>

<xsl:if test="(position() = last()) and (position() <

$cellsPerRow)">

<xsl:call-template name="FillerCells">

<xsl:with-param name="cellCount" select="$cellsPerRow -

position()"/>

</xsl:call-template>

</xsl:if>

</xsl:template>

<xsl:template name="FillerCells">

<xsl:param name="cellCount"/>

<td> </td>

<xsl:if test="$cellCount > 1">

<xsl:call-template name="FillerCells">

<xsl:with-param name="cellCount" select="$cellCount - 1"/>

</xsl:call-template>

</xsl:if>

</xsl:template>

<xsl:template name="replace-string">

<xsl:param name="text"/>

<xsl:param name="from"/>

<xsl:param name="to"/>

<xsl:choose>

<xsl:when test="contains($text, $from)">

<xsl:variable name="before" select="substring-before($text,

$from)"/>

<xsl:variable name="after" select="substring-after($text,

$from)"/>

<xsl:variable name="prefix" select="concat($before, $to)"/>

<xsl:value-of select="$before"/>

<xsl:value-of select="$to"/>

<xsl:call-template name="replace-string">

<xsl:with-param name="text" select="$after"/>

<xsl:with-param name="from" select="$from"/>

<xsl:with-param name="to" select="$to"/>

</xsl:call-template>

</xsl:when>

<xsl:otherwise>

<xsl:value-of select="$text"/>

</xsl:otherwise>

</xsl:choose>

</xsl:template>

</xsl:stylesheet>

The Drupal Fedora module asks for the query to return
SPARQL XML. So, a query like:

select $object $title $content from <#ri>

where $object <fedora-model:label> $title

and $object <fedora-model:hasModel> $content

and $object <fedora-rels-ext:isMemberOfCollection>

<info:fedora/demo:pid>

and $object <fedora-model:state> <info:fedora/fedora-system:def/

model#Active> order by $title

Would return results like:

<sparql xmlns="http://www.w3.org/2001/sw/DataAccess/rf1/

result">

<head>

<variable name="object"/>

<variable name="title"/>

<variable name="content"/>

</head>

<results>

<result>

<object uri="info:fedora/vre:ref-coll-188"/>

<title>A Test Collection</title>

<content uri="info:fedora/fedora-system:FedoraObject-3.0"/>

</result>

<result>

<object uri="info:fedora/vre:ref-coll-188"/>

<title>A Test Collection</title>

<content uri="info:fedora/islandora:collection"/>

</result>

<result>

<object uri="info:fedora/test:mark-library-1009"/>

<title>Building a Library 2.0 Tapestry</title>

<content uri="info:fedora/fedora-system:FedoraObject-3.0"/>

</result>

<result>

<object uri="info:fedora/test:mark-library-109"/>

<title>Building a Library 2.0 Tapestry</title>

<content uri="info:fedora/fedora-system:FedoraObject-3.0"/>

</result>

<result>

<object uri="info:fedora/test:mark-library-141"/>

<title>Coping With Change: Sys/Admin</title>

<content uri="info:fedora/fedora-system:FedoraObject-3.0"/>

</result>

</sparql>

You would use the XSLT as described above to transform the SPARQL XML to HTML. XSLT has to be matched to the Query. If you define a QUERY datastream your XSLT must be written to transform the results of that query.

3.4 CHILD_SECURITY

All objects in the collection will inherit the policies detailed in the collection object’s CHILD_SECURITY datastream. This gives us security at the collection level.

All objects in that collection will have the same POLICY stream. If there is no CHILD_SECURITY stream at the collection level there will be no POLICY stream at the object level and, as such, Drupal permissions and global XACML policies will define the users with permission to modify this object.

Adding a Child Security Policy to a Collection Object
To enable Islandora to use XACML policies you will need to add a data-stream with a dsid of CHILD_SECURITY to any object that will act as a collection type object.

Creating and adding this stream is similar to the COLLECTION_POLICY and ISLANDORACM streams above. They will have to be created/modified by hand in a XML editor. Currently, the only way to add these streams is via Islandora’s add stream form or the Fedora Admin client. As an example, to add security for the demo:SmileyStuff collection you would add an XACML stream with a dsid of CHILD_SECURITY to the demo:SmileyStuff object. This stream will then be added to all objects ingested into this collection as its POLICY stream. Caution: Be careful with POLICY streams as all access to an object can be lost if an object has an invalid POLICY stream.

We are also parsing the CHILD_SECURITY stream of the collection object to determine what users/roles can ingest at this level. This means that for now the XACML policies will have to be parse-able by our simple parser. Eventually, Islandora may include a callout determined by the Collection Policy to decide who can ingest in this collection.

Islandora XACML policies start out by denying access and then providing exceptions for users with certain roles or user ids. The file is parsed, looking for these roles/ids. If the user has any, they are allowed to ingest in the collection. An example XACML policy can be found on the DuraSpace Wiki1. This policy will allow all users to view but only the administrator role and fedoraAdmin user can modify. This could be the starting point of other policies and by adding users and roles determine who can modify the objects. A second example2 provides an another starting point where all user access is blocked to all actions except to the users and roles listed.

Depending on your global XACML policies you may have to add a policy file to the $FEDORA_HOME/data/ fedora-xacml-policies/repository-policies that will allow users who do not have the administrator role to ingest objects. This is only if you want non-administrator users to be able to manage objects. An example XACML policy3 that allows this available, but it opens API-M to all authenticated users.

If you have an XACML policy in every object that limits API-M this may be ok but you will probably want to modify this global policy to only allow certain roles to access API-M. By combining Drupal permissions and the Fedora XACML policies we hope to be able to keep the XACML relatively simple.

3.5 QUERY

A Collection object may have a QUERY datastream. If the object has a data-stream with a dsid of QUERY the Islandora module will attempt to use that query to get a list of objects related to that collection object. If there is no QUERY data-stream the module will try the generic one shown earlier in this document. Custom query/XSLT combinations should be written to expect SPARQL as the result. Here is a sample QUERY data-stream (would be uploaded with a text/plain mime-type):

select $object $title from <#ri>

where $object <dc:title> $title

and ($object <fedora-model:hasModel> <info:fedora/

islandora:mapCModel> or $object <fedora-model:hasModel>

<info:fedora/islandora:collectionCModel>)

and $object <fedora-rels-ext:isMemberOfCollection>

<info:fedora/imagined:collection>

and $object <fedora-model:state> <info:fedora/fedora-system:def/

model#Active>

order by $title

3.6 Islandora Content Models

Islandora uses Content Models to determine which mime-types can be ingested and how the object will be managed on ingest. This extends the Fedora Content Model Architecture (CMA).

Content models allow the definition of a custom data entry form to be displayed by the module for that object type. This allows differing data entry forms for differing object types.

The <display_in_fieldset> element determines how the object is displayed when a user accesses the object view.

The <ingest_rules> element defines how objects identified by specific dsid's are managed. For instance, a PDF content model may tell the module to create a thumbnail and ingest that thumbnail as an additional data-stream along with the actual PDF data-stream.

Islandora content models are stored as XML datastreams in a Fedora Content Model object with a datastream id (DSID) of ISLANDORACM. The collection policy data-stream, with a DSID of COLLECTION_POLICY, references one or more content models defining what types of objects can be ingested in a particular collection. The Make Demo Smiley Stuff Islandora Aware4 page has some examples of Collection Policies and Content Models. Additional sample content models are linked below in the “Creating an Islandora
Content Model” section.

In the Islandora content models we provide hooks that can be called at appropriate times, such as add datastream, edit metadata, ingest etc. The functions that are called by these hooks could then read more XML from the content model, for instance defining a data entry form. By using Islandora Content models you can make Islandora use the code that you provide. You can drop your php code into the modules directory (for example, under the plugins directory within the module) and then using the XML above you would be able to call your custom code or a combination of existing and custom code. Of course, you would require write access to the directory in order to copy your code.

3.7 Collection & Object Administration

If you have the appropriate Drupal permissions you will be able to ingest, purge and add data-streams. In Drupal your permissions are determined by the roles of the user you are logged in as. These permissions can be limited further by XACML policies. For instance, if you have a Drupal role that says you are allowed to add datastreams, you will be allowed to add data-streams to all objects except objects that have a XACML policy that denies it. View can also be blocked at the Fedora level using a XACML policy.

To manage objects in Fedora you browse to the object and, assuming the permissions allow, you can add/purge a data-stream, edit the metadata, or purge the object. Currently, you must edit raw XML to edit collection policies, content models and collection views. As an example, in order to change a collection view you would browse to the collection object, download the COLLECTION_VIEW stream, modify the XML, and then add the modified file back as a data-stream by clicking on the 'modify datastream' icon at the right of the datastream entry in the 'detailed list of content' section of an object's display page. There are some sample XML files shipped as part of the module. These files include Islandora Content Model (ISLANDORACM), Collection View (COLLECTION_VIEW), and Collection Policy (COLLECTION_POLICY) example files.

The simplest way to create an Islandora Content Model is to use the Islandora Content Modeler Module. The operation of this module is fully documented later in this guide.

Sample ISLANDORACM data-streams can be viewed in the objects that ship with the demo collections and
others are available online.

Chemical Compound Content Model: https://wiki.duraspace.org/download/attachments/11502608/compoundcm.xml
Specimen Content Model: https://wiki.duraspace.org/download/attachments/11502608/specimencm.xml
4 Appendix

4.1 Drupal

Drupal is an open source content management platform powering millions of websites and applications. It’s built, used, and supported by an active and diverse community of people around the world.

Pre-installation software checklist:
Drupal requires the following to be set-up and running prior to beginning your installation:

· Apache web server

· MySQL database are recommended.

· PHP 4 (4.3.5 or greater) or PHP 5 (http://www.php.net/)

*Installation Steps:   *These are the quick “get-up-and-running” installation steps for Drupal. A more comprehensive installation guide is available from http://drupal.org/documentation/install
1. Obtain the latest Drupal release from http://drupal.org/ and extract the contents of the compressed file. Note: Islandora is currently only compatible with Drupal 6.x.  
2. Move the contents of the drupal-x.x directory into a directory within your web server's document root or public HTML directory (ensure that the .htaccess file, a hidden file, is successfully moved into the destination directory as well).

mv drupal-x.x/* drupal-x.x/.htaccess /var/www/html

3. Make a copy of the default.settings.php file in the sites/default directory and name the copy settings.php.

cp sites/default/default.settings.php sites/default/settings.php

4. Give the web server “write privileges” to sites/default/settings.php and the sites/default/ directory:

chmod o+w sites/default/settings.php

chmod o+w sites/defaul

5. Create a database for Drupal. Make note of your username and password as you will need it when the Drupal install script runs.

mysqladmin \-u <mysqlusername> \-p create <databasename>

mysql \-u <mysqlusername> \-p

enter your password

grant all on <databasename>.* to <db_user_name>@<server> identified by '<password>';

flush privileges;

6. Run the install script by pointing your browser to the base URL of your website (e.g., http://www.example.com). 
7. Work through the on-screen steps to complete the Drupal site installation. 
8. When the install script succeeds, you will be directed to the "Welcome" page, and you will be logged in as the administrator.  
9. Proceed with the initial configuration steps suggested on the "Welcome" page. 
For a good introduction to Drupal and to learn how to harness it’s power and potential to create a site that meets your needs, access Drupal’s extensive online documentation at http://drupal.org/documentation . An additional source of information is also Drupal’s active open-source community, which can be accessed at http://drupal.org/community .

4.2 Fedora

Fedora or Flexible Extensible Digital Object Repository Architecture is a modular digital asset management (DAM) architecture that supports a variety of digital content needs. It was originally developed by researchers at Cornell University as an architecture for storing, managing, and accessing digital content in the form of digital objects. Fedora defines a set of abstractions for expressing digital objects, asserting relationships among digital objects, and linking "behaviors" (i.e., services) to digital objects. (ref: http://www.fedora-commons.org/about)

Fedora is available under the terms of the Apache License and has a very active open-source community producing additional tools, applications and utilities. At the time of this writing, Fedora 3.4.2 was the version available for download.

Pre-installation software checklist:
Fedora requires the following to be set-up and running prior to beginning your installation:

· Java SE Development Kit (JDK) 6: Available from http://java.sun.com/
· A database: Installed for Drupal. Consult the Fedora installation guide for notes on running other databases.

· An application server: Fedora includes the Tomcat Application Server. Consult the Fedora installation guide for notes on running other application servers.

Installation Steps:
1. Download the Fedora Repository software from https://wiki.duraspace.org/display/FCR30/Installation+and+Configuration+Guide 
2. Read through the online guide to ensure the pre-installation system pre-requisites are met. 
3. Preparing your local environment variables by modifying the .bash_profile or .profile file in the home directory of the fedora user.  
The following example assumes Java is installed in /opt/java and Fedora is installed in /usr/local/fedora: 
PATH=/opt/java/bin:$PATH:$HOME/bin

export FEDORA_HOME=/usr/local/fedora

export CATALINA_HOME=/usr/local/fedora/tomcat

export JAVA_OPTS="-Xms1024m \-Xmx1024m \-XX:MaxPermSize=128m \-Djavax.net.ssl.trustStore=/usr/local/fedora/server/truststore \-Djavax.net.ssl.trustStorePassword=tomcat"
export JAVA_HOME=/opt/java

4. Before beginning your Fedora installation, create a database for Fedora to use (In the install.properties file example that follows the database is called fedora3. This is referenced as part of the value string for database.jdbcURL). 
5. To start the installer, navigate to the directory where the install file was downloaded and run the following a command: 
java \-jar fcrepo-installer-3.4.2.jar 

6. Select the CUSTOM INSTALL.
 Note: It is important to select the Custom Install as it will enable the resource index by default, which is the backbone of Islandora's collection views and other functionality.

7. The Fedora installer script will ask you a series of questions. Once the script had collected your answers and configured Fedora on your system, the values are written to the install.properties file located in $FEDORA_HOME/install.

  An output of a sample install.properties file is included here to guide you through the installation.

 An example of an install.properties file:
\#Install Options

\#Mon Dec 13 11:52:24 PST 2010

keystore.file=included

ri.enabled=true
messaging.enabled=true
apia.auth.required=false
database.jdbcDriverClass=com.mysql.jdbc.Driver

tomcat.ssl.port=8443

ssl.available=true
database.jdbcURL=jdbc\:mysql\://localhost/fedora3?useUnicode\=true&characterEncoding\=UTF-8&autoReconnect\=true
messaging.uri=vm\:(broker\:(tcp\://localhost\:61616))

database.password=password

database.mysql.driver=included

database.username=fedoraUser

fesl.authz.enabled=false
tomcat.shutdown.port=8005

deploy.local.services=true
xacml.enabled=true
database.mysql.jdbcDriverClass=com.mysql.jdbc.Driver

tomcat.http.port=8080

fedora.serverHost=localhost

database=mysql

database.driver=included

fedora.serverContext=fedora

llstore.type=akubra-fs

tomcat.home=/usr/local/fedora/tomcat

fesl.authn.enabled=false
database.mysql.jdbcURL=jdbc:mysql://localhost:8889fedora34useUnicode=true&characterEncoding=UTF-8&autoReconnect=true
fedora.home=/usr/local/fedora

install.type=custom

servlet.engine=included

apim.ssl.required=false
fedora.admin.pass=fedoraAdmin

apia.ssl.required=false
8. Once the installation script has completed and Fedora is installed, you should start your Fedora instance by running: 
$FEDORA_HOME/tomcat/bin/startup.sh

9. To verify that Fedora has successfully started:

 a. $FEDORA_HOME/tomcat/logs/catalina.out should contain no errors.
 b. View your Fedora instance through a web browser: http://localhost:8080/fedora/
10. Access the Fedora Web Administrator: http://localhost:8080/fedora/admin and ensure you can ingest and purge objects.

11. For information on using Fedora, make use of the tutorials found at: https://wiki.duraspace.org/display/FR22DOC/Fedora+Tutorials https://wiki.duraspace.org/display/FR22DOC/Fedora+Tutorials

�	OJ L 79, 24.3.2005, p. 1.

[image: image3.jpg]