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What is Relevance Feedback

After an initial query, the user is presented with a
set of results

Then, the user gives feedback to the system

— Marks images as relevant and/or

— Marks images as irrelevant

Relevance feedback can be given explicitly or
implicitly

— Explicit: marking of several images

— Implicit: clicking on one image/stopping to search on



Positive and Negative Feedback

e Studies on strategies for relevance feedback
— Positive feedback often a reordering of top results or one
new query with a single image
* Images have already much in common

— Negative feedback is often the key to good results

* Really new images are retrieved
* Much more information is supplied

— Problem with two much negative feedback!
* Images with small number of features are returned

— As much feedback as possible usually delivers best
results



Problem with Negative Feedback

* Problem with too much negative feedback
also in text retrieval

* Solution: Separately weighting positive and
negative parts of feedback
— Often positive=0.65, negative=0.35

e Compare Rocchio’s Method [later]



Interfaces

* Simple interface
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Interfaces: Tree-based Query Interface

/3 IRMA Query ¥1.0 - Microsoft Internet Explorer
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This is the IRMA (Image Retrieval in Medical Applications System from RWTH University Hospital



Interfaces

* 3D Browsing and Searching Interface in MARS




Interfaces

e Video Search and Retrieval Interface
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Combination Schemes

* Given a set of positive and a set of negative
examples (possibly empty)

* How can we use this information?

* |n the following: different schemes to fuse
these information cues

Joint work with R. Paredes, UPV



Notation

* - image in the database

* (¢ query image

» () 'set of positively marked images
* () set of negatively marked images

e Px (7°|Q) probability that image x is relevant

given query (
* p.(7|q)probability that image x is irrelevant
given query (



RF as Combination of Classifiers

Consider relevance feedback images as training data
for a kernel density classifier

An image is relevant with probability

pz(rlq) o exp(—d(x,q4))

Analog: irrelevant

Pa(Tlq-)
( (QT,Q7)) =

Z p:z: |Q+

Q+EQ+

x exp (—d(z,q-))

Combine these classifiers by averaging (bagging)
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Default method in FIRE



Relevance Score

* Giacinto et al. propose an instance-based
relevance feedback mechanism

e Relevance Score:
min d(x,q+)

1
+ — —  a+€QT
RS(z, (QT,Q7)) = (1 ' min d(33~q>)

qg_€Q—

* Advantages: supports inhomogeneous sets Q*
and Q



Rocchio’s Method

Proposed for textual information retrieval by Rocchio
in 1972

Reformulate the query by going

— Into the direction of the positive feedback Q*
— Away from the negative feedback Q-

Advantage: very fast, only one query has to be
performed

g=q+B| Y ar |- > a-

q+€QT q-€Q~

Default method in GIFT



Quotient of Sums

* Try to define a sound probabilistic model for
relevance feedback

* Determine probability for an image to be relevant
(according to Bayes’ decision rule)

P
P = Beyp(alr) + PE)p(alr)

e The different terms used here are defined in the
following

* Inspired by RelevanceScore and FIRE’s method



Quotient of Sums

* Prior probabilities for images to be relevant or
irrelevant:

+ _
Ol py 1971
QTUQ| QT UQ]
* Emission probability for an image given relevant or
irrelevant

P(r) =

p(x|r) « |Q+| Zl/dxq

qgeEQT

p(x|r) Z 1/d(x,q)

qeQ ™



Quotient of Sums

* The likelihood for an image to be relevant
then is

2. 1/d(z,q)

qeQ™
S(Q+,Q—)(x) — Z 1/d(-’137 q))
ge{QTUQ™}

* This is used to rank images in retrieval



Tuning the system

* Apart from combining the queries, they can be
used to tune parameters of the system

— Compare to the learning of feature combinations

* Here:

— Refine image comparison measures



Learning Weighted Distances

* Relevance feedback allows to use machine
learning techniques to tune parameters of a

system
* One possibility is to tune the distance function

— Add weight for each component of the vectors
which are compared

D
d(fL’a Q) — Zizl ’wz|Tz — Qil

Joint work with R. Paredes, UPV



Learning Weighted Distances

* Optimisation:
— Minimise the distances from each relevant
(positive) image to all other relevant images

d(zx,
DI SR SR

reQT  qreQt\{z} q_e€Q \{z}

— Analogously: Maximise the distances from each
irrelevant (negative) image to all relevant images

Joint work with R. Paredes, UPV



Experimental Evaluation: WANG

WANG database: 1000 images, 10 classes, “easy task”
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Evaluation on WANG Data
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ImageCLEF Database

20,000 colour photographs
Accompanied by semi-structured
captions

o English and Random

Many images have similar visual
content but varying

o illumination

o viewing angle

o background

Used in ImageCLEF in 2006 — 2008
Publicliy available from
www.imageclef.org




ImageCLEF Database: Image

<DOC>
<DOCNO>annotations/17/17405.eng</DOCNO>
<TITLE>Group photo with Machu Picchu and
Huayna Picchu in the background</TITLE>
<DESCRIPTION>tourists are sitting on a grey
gravel road in the foreground;

a ruin with grey walls and many green
terraces and a distinctive, rocky, steep
mountain behind it;

a wooden mountain range and white clouds in
the background; </DESCRIPTION>
<NOTES></NOTES>

<LOCATION>Machu Picchu, Peru</LOCATION>
<DATE>26 October 2004</DATE>
<IMAGE>images/17/17405. jpg</IMAGE>
<THUMBNAIL>thumbnails/17/17405.jpg</
THUMBNAIL>

</DOC>




ImageCLEF Database: Query

« 39 topics with full

information
o Based on realistic topics (log-

file analysis and interviews)

» Available in English only

* Augmented by a cluster
tag

o defines how the rel. images
should be clustered

<top>

<num> Number: 5 </num>

<title> animal swimming </title>
<cluster> animal </cluster>

<narr> Relevant images will show one or
more animals (fish, birds, reptiles, etc.)
swimming in a body of water. Images of
people swimming in water are not relevant.
Images of animals that are not swimming
are not not relevant. </narr>

<image> SampleImages/05/3739.7pg </image>
<image> SampleImages/05/4986.jpg </image>
<image> SampleImages/05/30823.jpg </image>
</top>

Sample topic images:




Evaluation on ImageCLEF 2007 task
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ICLEF: interactive multi-lingual
image retrieval

* Simultaneous search in multiple languages

* User interaction
— Have users participate
— Competition
— Researchers work on log-files

* Mainly text-based, visual extension would be
interesting but difficult



ICLEF: user interface
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