Text-based (image) retrieval

Henning Müller HES SO//Valais Sierre, Switzerland

Overview

- Difference of words and features
 - Weightings instead of distance measures
- Stemming and pre-treatment
- Approaches for multilingual retrieval
- Tools available on the web
 - Lucene, ...

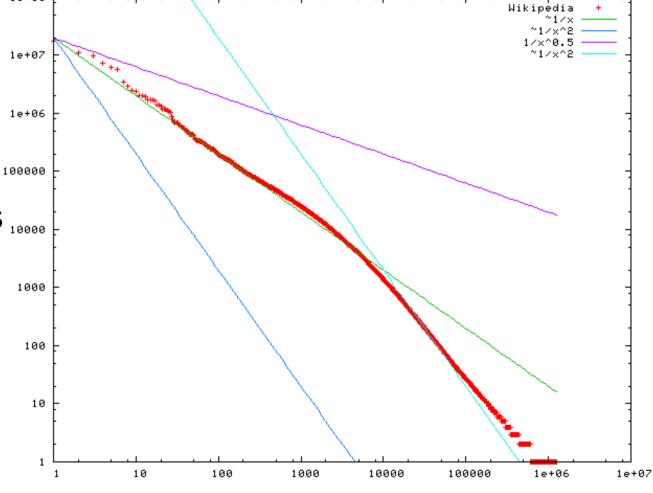
Text retrieval (of images)

- Started in the early 1960s ... for images 1970s
- Not the main focus of this talk
- Text retrieval is old!!
 - Many techniques in image retrieval are taken from this domain (sometimes reinvented)
- It becomes clear that the combination of visual and textual retrieval has biggest potential
 - Good text retrieval engines exist in Open Source

Problems with annotation (of images)

- Many things are hard to express
 - Feelings, situations, ... (what is scary?)
 - What is in the image, what is it about, what does it invoke?
- Annotation is never complete
 - Plus it depends on the goal of the annotation
- Many ways to say the same thing ...
 - Synonyms, hyponyms, hypernyms, ...
- Mistakes
 - Spelling errors, spelling differences (US vs. UK), weird abbreviations (particularly medical ...)

Basics in text retrieval


- Started with boolean search of words in text
 - In combination with AND, OR, NOT
 - No ranking, rather finite list of corresponding documents
- Vector space model to have distance between search terms and documents
 - Each occurring word is a dimension, its difference in frequency can be measured
 - Overall frequency of words as importance for axis

Zipf distribution (wikipedia example)

X- rank

• Y- number
of occurrences
of the word

Principle ideas used in text IR

- Words follow basically a Zipf distribution
- Tf/idf weightings
 - A word frequent in a document describes it well
 - A word rare in a collection has a high discriminative power
 - Many variations of tf/idf (see also Salton/Buckley paper)
- Use of inverted files for quick query responses
 - Relevance feedback, query expansion, ...

Hes·so/// WALAIS WALLIS

Techniques used in text retrieval

- Bag of words approach
 - Or N-grams can be used
- Stop words can be removed
- Stemming can improve results
- Named entity recognition
- Spelling correction (also umlauts, accents, ...)
 - Google had a big success with this
- Mapping of text to a controlled vocabulary/ ontology

Stop word removal

- Very frequent words contain little information and can be removed
 - Automatically in Google et al.
- These words depend on the language
 - Stop word lists exist in many languages
 - Often 40-50% of texts
 - Contains also less frequent words not carrying information
- Or simply remove words above a certain frequency

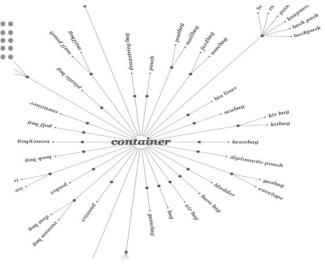
Stemming - conflation

- Strongly dependent on the language
- Basically suffix stripping based on a set of rules
 - Cats, catty, catlike=cat as root or stem
- Can also create errors or slightly change meaning (errors often reported around ~5%)
- Porter stemmer for English is one of the most well known algorithms with a free implementation

Synonymy, polysemy

- Synonymy
 - Several words can say the same thing: car, automobile
- Polysemy
 - The same word can have several meanings
- Latent semantic Indexing (LSI)
 - Word cooccurences in the entire collection
 - Can reduce effects of synonyms

Query expansion vs. relevance feedback


- Most queries contain only very few keywords
- Add keywords to expand the original query
 - Can be automatic or manual
 - Semantically similar words, synonyms, discriminative words
- Often used in a similar way as relevance feedback but not with entire documents

Medical terminologies

- MeSH, UMLS are frequently used
 - Mapping of free text to terminologies
 - · Quality for the first few is very high
 - Links between items can be used
 - Hyponyms, hypernyms, ...
 - Several axes exist (anatomy, pathology, ...)
 - This can be used for making a query more discriminative
- This can also be used for multilingual retrieval

Wordnet

- Hierarchy, links, definitions in English language
 - Maintained in Princeton
- Car, auto, automobile, machine, motorcar
 - motor vehicle, automotive vehicle
 - vehicle
 - conveyance, transport
 - » instrumentality, instrumentation
 - » artifact, artefact
 - » object, physical object
 - » entity, something

Apache Lucene

- Open source text retrieval system
 - Written in Java
- Several tools available
 - Easy to use
- Used in many research projects and in industry
- Image retrieval plugin exists
 - LIRE (Lucene Image REtrieval)
 - Using simple MPEG-7 visual features

- Many collections are inherently multilingual
 - Web, FlickR, medical teaching files, ...
- Translation resources exist on the web
 - TrebleCLEF has a survey of such resources in work
 - Translate query into document language
 - Translate documents into query language
 - Map documents and queries onto a common terminology of concepts
- We understand documents in other languages

Cross Language Evaluation Forum (CLEF)

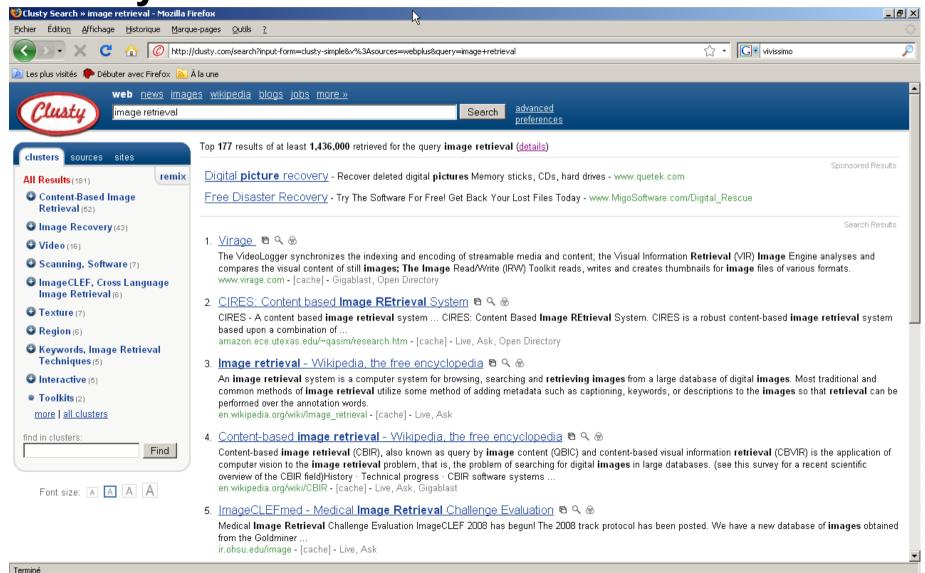
- Forum to compare multilingual retrieval in a variety of domains
 - GeoCLEF
 - QA CLEF
 - Domain-specific CLEF
 - **—** ...
- Proceedings are a very good start for multilingual techniques

Challenges in multi-linguality

- Language pairs have a strongly varying difficulty
 - Families of languages are easier for multilingual retrieval as more similar
- Resources available depend strongly on the languages used
 - English has many resources, German, Spanish and French quite a few but rare languages rather little

Multilingual tools

- Many translation tools are accessible on the web
 - Yahoo! Babel fish
 - www.reverso.net
 - Google translate
- Named entity recognition
- Word-sense disambiguation


Current challenges in text retrieval

- Many taken from the WWW or linked to it
- Analysis of link structures to obtain information on potential relevance
 - Also in companies, social platforms, ...
- Question of diversity in results
 - You do not want to have the same results show up ten times on the top
- Retrieval in context (domain specific)
- Question answering

Diversity

Business Information Systems

Conclusions

- Text retrieval is a basis of image retrieval
 - Many techniques come from this domain
- Text has more semantics than visual features
 - But other problems as well
- Text and image features combined have biggest chances for success
 - Use text wherever available
- Multilingualism is an important issue as most of the web is very multilingual

References

- G. Salton and C. Buckley, Term weighting approaches in automatic text retrieval, Information Processing and Management, 24(5):513--523, 1988.
- K. Sparck Jones and C. J. Van Rijsbergen, Progress in documentation, Journal of Documentation}, 32:59--75, 1976.
- J. J. Rocchio, Relevance feedback in information retrieval, The SMART Retrieval System, Experiments in Automatic Document Processing, pages 313--323.
- M. Braschler, C. Peters, Cross-Language Evaluation Forum: Objectives, Results, Achievements, Information Retrieval, 2004.
- J. Gobeill, H. Müller, P. Ruch, Translation by Text Categorization: Medical Image Retrieval in ImageCLEFmed 2006, Springer Lecture Notes in Computer Science (LNCS 4730), pages 706-710, 2007.