Efficient Algorithms for
Image Retrieval

Outline

e Algorithms for the continuous approach
— Fast nearest neighbour searching

e Algorithms for the discrete approach

— Inverted document files

Nearest Neighbour

* Voronoi Diagramina 2D
space

e A set of points and the
corresponding Voronoi
cells

* A Voronoi cell is the
area where a point’s
nearest neighbour is the

seed of the cell
Source: Wikipedia

Nearest Neighbour

e Standard nearest neighbour search
X[1] .. X[N]: data set
Q: query
mindist=e
bestN=-1

For n=1:N:
d=dist(qg,X[n])
if d<mindist:

mindist=d
bestN=n
return bestN

Data structure for multi-
dimensional data

Save data in a tree structure
Directory nodes (blue)
Data nodes (red)

Save minimum bounding
rectangles in directory
nodes

P21

)

P,

P23

P11

P13

P

P12

P21

P22

P2

P23

P11

P13

P1

P12

Index Structures: Complexity

Linear search

— Complexity O(n/C), very small overhead

Bad situation for index structures

Large range

Strongly overlapping regions

Few regions are not accessed
Common with high dimensionalities
Complexity O(n/C), high overhead

Good situation

Small range

Small overlaps

Many regions do not have to be read
Complexity O(log(n))

Nearest Neighbour Search with Index

Init: resultdist=w
Function SimpleNNQuery(Point q, Address: page):
page.load()
if isDataPage(page):
for x in page.points:
d=dist(qg,x)
if d<resultdist:
resultdist=d
result=x
else:
for p in page.childPages:
if MINDIST(qg,p)<resultdist:
SimpleNNQuery(q,p);

* First path finds arbitrary point
* Search space only slowly reduced
 Many pages unnecessarily read

_Example Query

|f the search had started
with p, no page from p,
would have been read

\’j/ o, *Clearly non-optimal
12

P13

Nearest Neighbour Search with Index
Best-First Search

Avoid recursion
Instead use priority queue APL (active page list)
— List which contains directory pages to be processed sorted by priority

Definition: a page p is active, if and only if

— p not yet processed

— Parent of p processed

— Minimum distance between p and g < current best distance
Initialisation: APL = [root]

In each step, process best page from APL

— Data pages: as before

— Directory pages: check minimum distance to query

Best First Nearest Neighbour Search with Index

Init: apl = [(©.0,ro00t)] // sorted by dist
resultdist=ew
While apl.notEmpty() and apl[@].dist<resultdist:
page=apl[0].load()
delete(apl[0Q])
if isDataPage(page):
for x in page.points:
d=dist(qg,x)
if d<resultdist:
resultdist=d
result=x
else:
for p in page.childPages:
h=MINDIST(q,p)
if h<resultdist:
apl.insert((h,p))

Example Query with Best First Search

P21

pzzg

P,

P23

o

P12

P13

P1

ANPLL: (123 o) 2Rl 66222033118 2, p,;) |
meswi kidiist:: P

Best First Search is optimal
Here: a draft of the proof

1. Completeness: It will find the correct NN of a query

— Every correct algorithm has to access all pages that
intersect with the NN sphere of q

— These pages have MINDIST < resultdist

2. It accesses pages in ascending order from the query

— The APL is sorted by MINDIST and the algorithm will
terminate once it is impossible to find any point closer to
g than the current result

3. It will not access a single page with MINDIST larger
than the true NN distance

— Child pages cannot have a MINDIST smaller than its
parents

Discrete Approach

Inspired by textual information retrieval

Each image is represented by a set of binary
features (features may be present (possibly
multiple times) or absent)

Feature is either present or absent

— Similar to words being absent or present in a
document

Images containing the same (informative)
features are assumed to be relevant to a query

Example: GIFT — GNU Image Finding Tool

Discrete Approach

* GIFT uses TF-IDF (text frequency/inverse document

frequency) ranking

— Reduce the impact of features which occur frequently in
the data (comparable to “the” in texts)

* TF:frequency a feature j has in a document d,

106 = 5)

* |IDF: measures importance of a term

o B
idf () = log <|{dj :n(i, j) > 0}\)

Discrete Approach

* tf captures how often a feature occurs in a
document

— Features that occur often in a document describe this
document well

 jdf captures how relevant a feature is

— Features that occur rarely in the full database are
Important
* |Important are those features which are often in
one image, but seldom over the full data set

— Images which share seldom features are relevant with
respect to each other

Discrete Approach in GIFT

In GIFT, 4 different feature sets are considered

— Global colour

— Local colour

— Global texture

— Local texture

For all local features a tf-idf-like score is calculated and these are
fused as a weighted sum

— Global features are compared with a histogram intersection

For many cases, the discrete and the continuous approach can be
simulated in the respective other

In GIFT
— Images have about 1,500 to 2,000 features
— Similar images share about 400-500

Discrete Approach: Inverted Files

Store a mapping from content to location
— E.g. for each feature a list of images that contain this feature

Allow for efficient searches even for huge amounts of images
— idf for each feature can be pre-calculated
— tf for each feature is stored in the files
— Allows for searching without accessing the images

In the continuous approach searching for neighbours is linear to the
amount of images, here it is at most linear to the number of
features in an image

— In practice, the features with high impact are processed first and the

other features have less influence (Zipf’s Law). Therefore, in practice,
this approach is very fast

The inverted file

Feature 1 Image 5 “ Image 7 “ Image 1 I Image 25

Feature 2 Image 1 “ Image 17 “ Image 3 I

Image 25 I Image 17 “ Image 1 | Image 4

Feature n-1 | Image 4 “ Image 5 “ Image 6 I

Feature n Image 2 “ Image 17 “ Image 12 I Image 3

Inverted Files

e Access feature by feature instead of image by
Image

e Extremely fast access for rare features
e Efficient for sparsely populated spaces

Characteristics Inverted File

Horizontal texture ~ —{() = Horizontal texture g mam
Vertical texture I I Vertical texture || |
Red — S
Yellow £ { - Yellow - II =
| L) 1
PR ;'S rs =
Blue —\[) [|] Blue " =
o 11

